Biochemical Genetics

, Volume 50, Issue 5–6, pp 454–466 | Cite as

Differences in Salinity Tolerance and Gene Expression Between Two Populations of Atlantic Cod (Gadus morhua) in Response to Salinity Stress

  • P. F. Larsen
  • E. E. Nielsen
  • K. Meier
  • P. A. Olsvik
  • M. M. Hansen
  • V. Loeschcke
Article

Abstract

Populations of marine fish, even from contrasting habitats, generally show low genetic differentiation at neutral genetic markers. Nevertheless, there is increasing evidence for differences in gene expression among populations that may be ascribed to adaptive divergence. Studying variation in salinity tolerance and gene expression among Atlantic cod (Gadus morhua) from two populations distributed across a steep salinity gradient, we observed high mortality (45% North Sea cod and 80% Baltic Sea cod) in a reciprocal common garden setup. Quantitative RT-PCR assays for expression of hsp70 and Na/K-ATPase α genes demonstrated significant differences in gene regulation within and between populations and treatment groups despite low sample sizes. Most interesting are the significant differences observed in expression of the Na/K-ATPase α gene in gill tissue between North Sea and Baltic cod. The findings strongly suggest that Atlantic cod are adapted to local saline conditions, despite relatively low levels of neutral genetic divergence between populations.

Keywords

Gene expression variation Population structure Salinity gradient Salinity tolerance 

Notes

Acknowledgments

This study was supported by grants to Peter Foged Larsen from the SLIP Research School under the Danish Network for Fisheries and Aquaculture Research financed by the Danish Ministry for Food, Agriculture and Fisheries and the Danish Agricultural and Veterinary Research Council, the Danish Institute for Fisheries Research, the Elisabeth and Knud Petersens Foundation, and the Idella Foundation. The authors thank Palle Holm Hansen for guidance on fish maintenance, Karen-Lise Dons Mensberg and Dorte Meldrup for assistance in the laboratory, and Henrik Baktoft for graphical assistance.

References

  1. Babu MM, Aravind L (2006) Adaptive evolution by optimizing expression levels in different environments. Trends Microbiol 14:11–14PubMedCrossRefGoogle Scholar
  2. Basu N, Nakano T, Grau EG, Iwama GK (2001) The effects of cortisol on heat shock protein 70 levels in two fish species. Gen Comp Endocrinol 124:97–105PubMedCrossRefGoogle Scholar
  3. Cossins AR, Crawford DL (2005) Opinion: fish as models for environmental genomics. Nature Rev Genet 6:324–333PubMedCrossRefGoogle Scholar
  4. Deane EE, Woo NYS (2004) Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp Physiol 287:R1054–R1063PubMedCrossRefGoogle Scholar
  5. Deane EE, Kelly SP, Luk JCY, Woo NYS (2002) Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar Biotechnol 4:193–205PubMedGoogle Scholar
  6. DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342PubMedCrossRefGoogle Scholar
  7. Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264PubMedCrossRefGoogle Scholar
  8. Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177PubMedCrossRefGoogle Scholar
  9. Fangue NA, Hofmeister M, Schulte PM (2006) Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Exp Biol 209:2859–2872PubMedCrossRefGoogle Scholar
  10. Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, Consuegra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson AF, Webb JH, Vøllestad LA, Villanueva B, Ferguson A, Quinn TP (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82:173–211PubMedCrossRefGoogle Scholar
  11. Gilad Y, Oshlack A, Rifkin SA (2006) Natural selection on gene expression. Trends Genet 22:456–461PubMedCrossRefGoogle Scholar
  12. Goetz FW, MacKenzie S (2008) Functional genomics with microarrays in fish biology and fisheries. Fish Fish 9:378–395CrossRefGoogle Scholar
  13. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–4Google Scholar
  14. Johannesson K, Andre C (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029PubMedCrossRefGoogle Scholar
  15. Larsen PF, Nielsen EE, Williams TD, Hemmer-Hansen J, Chipman JK, Kruhøffer M, Grønkjaer P, George SG, Dyrskjøt L, Loeschcke V (2007) Adaptive differences in gene expression in European flounder (Platichthys flesus). Mol Ecol 16:4674–4683PubMedCrossRefGoogle Scholar
  16. Larsen PF, Nielsen EE, Koed A, Thomsen DS, Olsvik PA, Loeschcke V (2008a) Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.). BMC Genetics 9:12Google Scholar
  17. Larsen PF, Nielsen EE, Williams TD, Loeschcke V (2008b) Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity 101:247–259PubMedCrossRefGoogle Scholar
  18. Larsen PF, Schulte PM, Nielsen EE (2011) Gene expression analysis for identification of selection and local adaptation in fishes. J Fish Biol 78:1–22PubMedCrossRefGoogle Scholar
  19. Lee CE, Petersen CH (2002) Genotype-by-environment interaction for salinity tolerance in the freshwater-invading copepod Eurytemora affinis. Physiol Biochem Zool 75:335–344PubMedCrossRefGoogle Scholar
  20. Lejeusne C, Perez T, Sarrazin V, Chevaldonne P (2006) Baseline expression of heat-shock proteins (HSPs) of a “thermotolerant” Mediterranean marine species largely influenced by natural temperature fluctuations. Can J Fish Aquat Sci 63:2028–2037CrossRefGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  22. Marcil J, Swain DP, Hutchings JA (2006) Countergradient variation in body shape between two populations of Atlantic cod (Gadus morhua). Proc Royal Soc B Biol Sci 273:217–223CrossRefGoogle Scholar
  23. McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zoologist 41:781–794CrossRefGoogle Scholar
  24. McKay JK, Bishop JG, Lin JZ, Richards JH, Sala A, Mitchell-Olds T (2001) Local adaptation across a climatic gradient despite small effective population size in the rare sapphire rockcress. Proc Royal Soc B Biol Sci 268:1715–1721CrossRefGoogle Scholar
  25. Nielsen EE, Hansen MM, Bach L (2001a) Looking for a needle in a haystack: discovery of indigenous salmon in heavily stocked populations. Conserv Genet 2:219–232CrossRefGoogle Scholar
  26. Nielsen EE, Hansen MM, Schmidt C, Meldrup D, Gronkjaer P (2001b) Fisheries: population of origin of Atlantic cod. Nature 413:272–272PubMedCrossRefGoogle Scholar
  27. Nielsen EE, Hansen MM, Ruzzante DE, Meldrup D, Gronkjaer P (2003) Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysis. Mol Ecol 12:1497–1508PubMedCrossRefGoogle Scholar
  28. Nielsen EE, Gronkjaer P, Meldrup D, Paulsen H (2005) Retention of juveniles within a hybrid zone between North Sea and Baltic Sea Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 62:2219–2225CrossRefGoogle Scholar
  29. Nissling A, Westin L (1997) Salinity requirements for successful spawning of Baltic and Belt Sea cod and the potential for cod stock interactions in the Baltic Sea. Marine Ecol Progress Series 152:261–271CrossRefGoogle Scholar
  30. Oleksiak MF, Churchill GA, Crawford DL (2002) Variation in gene expression within and among natural populations. Nat Genet 32:261–266PubMedCrossRefGoogle Scholar
  31. Ottera H, Agnalt AL, Jorstad KE (2006) Differences in spawning time of captive Atlantic cod from four regions of Norway, kept under identical conditions. Ices J Marine Sci 63:216–223CrossRefGoogle Scholar
  32. Poulsen NA, Nielsen EE, Schierup MH, Loeschcke V, Gronkjaer P (2006) Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol Ecol 15:321–331PubMedCrossRefGoogle Scholar
  33. Rozen SS, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. 365–386Google Scholar
  34. Sangiao-Alvarellos S, Laiz-Carrion R, Guzman JM, Martin del Rio MP, Miguez JM, Mancera JM, Soengas JL (2003) Acclimation of S-aurata to various salinities alters energy metabolism of osmoregulatory and nonosmoregulatory organs. Am J Physiol Regul Integr Comp Physiol 285:R897–R907PubMedGoogle Scholar
  35. Sangiao-Alvarellos S, Arjona FJ, Martin del Rio MP, Miguez JM, Mancera JM, Soengas JL (2005) Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. J Exp Biol 208:4291–4304PubMedCrossRefGoogle Scholar
  36. Schulte PM (2001) Environmental adaptations as windows on molecular evolution. Comp Biochem Physiol B Biochem Mol Biol 128:597–611PubMedCrossRefGoogle Scholar
  37. Schulte PM (2007) Responses to environmental stressors in an estuarine fish: Interacting stressors and the impacts of local adaptation. J Thermal Biol 32:152–161CrossRefGoogle Scholar
  38. Scott GR, Schulte PM (2005) Intraspecific variation in gene expression after seawater transfer in gills of the euryhaline killifish Fundulus heteroclitus. Comp Biochem Physiol A Mol Integr Physiol 141:176–182PubMedCrossRefGoogle Scholar
  39. Scott GR, Rogers JT, Richards JG, Wood CA, Schulte PM (2004) Intraspecific divergence of ionoregulatory physiology in the euryhaline teleost Fundulus heteroclitus: possible mechanisms of freshwater adaptation. J Exp Biol 207:3399–3410PubMedCrossRefGoogle Scholar
  40. Sick K (1965) Haemoglobin polymorphism of cod in the Baltic and Danish Belt Sea. Hereditas-Genetiskt Arkiv 54:19CrossRefGoogle Scholar
  41. Smith TR, Tremblay GC, Bradley TM (1999) Hsp70 and a 54 kDa protein (Osp54) are induced in salmon (Salmo salar) in response to hyperosmotic stress. J Exp Zool 284:286–298PubMedCrossRefGoogle Scholar
  42. Stahlberg A, Hakansson J, Xian XJ, Semb H, Kubista M (2004) Properties of the reverse transcription reaction in mRNA quantification. Clinical Chem 50:509–515CrossRefGoogle Scholar
  43. Svedang H, Svenson A (2006) Cod Gadus morhua L. populations as behavioural units: inference from time series on juvenile abundance in the eastern Skagerrak. J Fish Biol 69:151–164CrossRefGoogle Scholar
  44. Vasemägi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642PubMedCrossRefGoogle Scholar
  45. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Heredity 89:438–450CrossRefGoogle Scholar
  46. West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA 102:6543–6549PubMedCrossRefGoogle Scholar
  47. Whitehead A (2009) Comparative mitochondrial genomics within and among species of killifish. BMC Evol Biol 9Google Scholar
  48. Whitehead A (2010) The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus sp.). Evolution 64:2070–2085PubMedGoogle Scholar
  49. Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci USA 103:5425–5430PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. F. Larsen
    • 1
    • 2
  • E. E. Nielsen
    • 2
  • K. Meier
    • 2
  • P. A. Olsvik
    • 3
  • M. M. Hansen
    • 1
  • V. Loeschcke
    • 1
  1. 1.Department of Biological SciencesAarhus UniversityAarhus CDenmark
  2. 2.National Institute of Aquatic Resources, Technical University of DenmarkSilkeborgDenmark
  3. 3.National Institute of Nutrition and Seafood ResearchNordnes, BergenNorway

Personalised recommendations