Biochemical Genetics

, Volume 50, Issue 5–6, pp 397–415 | Cite as

Isolation of Microsatellite Markers and Analysis of Genetic Diversity Among East Atlantic Populations of the Sword Razor Shell Ensis siliqua: A Tool for Population Management

  • Alberto Arias-Pérez
  • Juan Fernández-Tajes
  • Miguel B. Gaspar
  • Josefina Méndez


The sword razor shell Ensis siliqua (Linnaeus, 1758) is found mainly from Norway to the Atlantic coast of the Iberian Peninsula. It is intensively caught in Europe, being highly appreciated as seafood. To help in its conservation and management, five microsatellite markers were isolated and genetic variation was analyzed in samples from Ireland, Spain, and Portugal. The highly significant differentiation (θ = 0.287, P < 0.001) observed was mainly due to differences between samples from Irish and Iberian Peninsula localities, except Aveiro (its sample resembled the Irish samples, and it may be predominantly self-recruiting). These groups of samples showed significant differences in allelic richness that could be related to harvesting intensity. Moreover, microsatellites detected low but significant differentiation between Iberian localities (Celeiro and Olhão), and Aveiro differed significantly from Strangford Lough. Overall, results suggest that two independently evolving regions exist and that management strategies should be designed for each region.


Ensis siliqua Genetic differentiation Genetic variation Management Microsatellite markers Sword razor shell 


  1. Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337PubMedCrossRefGoogle Scholar
  2. Arias A, Fernández-Moreno M, Fernández-Tajes J, Gaspar M, Méndez J (2010) Strong genetic differentiation among east Atlantic populations of the sword razor shell (Ensis siliqua) assessed with mtDNA and RAPD markers. Helgoland Mar Res 65:81–89CrossRefGoogle Scholar
  3. Banks SC, Piggott MP, Williamson JE, Bove U, Holbrook NJ, Beheregaray LB (2007) Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88:3055–3064PubMedCrossRefGoogle Scholar
  4. Beaumont AR, Zouros E (1991) Genetics of scallops. In: Shumway SE (ed) Scallops: biology, ecology and aquaculture. Elsevier, Amsterdam, pp 585–617Google Scholar
  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) Genetix 4.05, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France).
  6. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedCrossRefGoogle Scholar
  7. Bickham JW, Sandhu S, Hebert PD, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res 463:33–51PubMedCrossRefGoogle Scholar
  8. Billote N, Lagoda PJL, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  9. Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154PubMedCrossRefGoogle Scholar
  10. Brookfield JF (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455PubMedGoogle Scholar
  11. Cabranes C, Fernandez-Rueda P, Martinez JL (2008) Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J Mar Sci 65:12–16CrossRefGoogle Scholar
  12. Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B 126:455–476PubMedCrossRefGoogle Scholar
  13. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  14. Comesaña AS, Martínez-Areal MT, Sanjuan A (2008) Genetic variation in the mitochondrial DNA control region among horse mackerel (Trachurus trachurus) from the Atlantic and Mediterranean areas. Fish Res 89:122–131CrossRefGoogle Scholar
  15. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J R Stat Soc Ser B Methodol 39:1–38Google Scholar
  16. Diz AP, Presa P (2008) Regional patterns of microsatellite variation in Mytilus galloprovincialis from the Iberian Peninsula. Mar Biol 154:277–286CrossRefGoogle Scholar
  17. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. BioTechniques 20:758–760PubMedGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:50Google Scholar
  20. Fernández-Tajes J, Méndez J (2007) Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region. J Agric Food Chem 55:7278–7282PubMedCrossRefGoogle Scholar
  21. Fernández-Tajes J, Gaspar M, Martinez-Patino D, McDonough N, Roberts D, Gonzalez-Tizon A, Martinez-Lage A, Mendez J (2007) Genetic variation of the razor clam Ensis siliqua (Jeffreys, 1875) along the European coast based on random amplified polymorphic DNA markers. Aquac Res 38:1205–1212CrossRefGoogle Scholar
  22. Gaffney PM (1994) Heterosis and heterozygote deficiencies in marine bivalves: more light? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 146–153Google Scholar
  23. Gaspar MB, Monteiro CC (1998) Reproductive cycles of the razor clam Ensis siliqua and the clam Venus striatula off Vilamoura, southern Portugal. J Mar Biol Assoc UK 78:1247–1258CrossRefGoogle Scholar
  24. Gaspar MB, Castro M, Monteiro CC (1999) Effect of tooth spacing and mesh size on the catch of the Portuguese clam and razor clam dredge. ICES J Mar Sci 56:103–110CrossRefGoogle Scholar
  25. Gaspar MB, Constantino R, Monteiro CC (2008) Capítulo 12: La captura de longueirón (Ensis siliqua y Solen marginatus) en Portugal. In: Guerra Díaz A, Lodeiros Seijo C (eds) Navajas y longueirones: biología, pesquerías y cultivo. Xunta de Galicia. Consellería de Pesca e Asuntos Marítimos, Santiago de Compostela, pp 295–308Google Scholar
  26. Goudet J (2001) FStat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Institut d’Ecologie, Université de Lausanne, Dorigny, Switzerland.
  27. Guerra Díaz A, Gabín Sánchez C (2008) Capítulo 11: Navajas y longueirones comerciales en España. In: Guerra Díaz A, Lodeiros Seijo C (eds) Navajas y longueirones: biología, pesquerías y cultivo. Xunta de Galicia. Consellería de Pesca e Asuntos Marítimos, Santiago de Compostela, pp 273–293Google Scholar
  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  29. Hedgecock D, Li G, Hubert S, Bucklin K, Ribes V (2004) Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. J Shellfish Res 23:379–385Google Scholar
  30. Hemmer-Hansen J, Nielsen EE, Gronkjaer P, Loeschcke V (2007) Evolutionary mechanisms shaping the genetic population structure of marine fishes: lessons from the European flounder (Platichthys flesus L.). Mol Ecol 16:3104–3118PubMedCrossRefGoogle Scholar
  31. Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv Genet 11:139–147CrossRefGoogle Scholar
  32. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914CrossRefGoogle Scholar
  33. Jørgensen HBH, Hansen MM, Bekkevold D, Ruzzante DE, Loeschcke V (2005) Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol Ecol 14:3219–3234PubMedCrossRefGoogle Scholar
  34. Kenchington EL, Patwary MU, Zouros E, Bird CJ (2006) Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Mol Ecol 15:1781–1796PubMedCrossRefGoogle Scholar
  35. Launey S, Ledu C, Boudry P, Bonhomme F, Naciri-Graven Y (2002) Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by Microsatellite polymorphism. J Hered 93:331–351PubMedCrossRefGoogle Scholar
  36. Li G, Hubert S, Bucklin K, Ribes V, Hedgecock D (2003) Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Mol Ecol Notes 3:228–232CrossRefGoogle Scholar
  37. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465PubMedCrossRefGoogle Scholar
  38. Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37CrossRefGoogle Scholar
  39. Louis EJ, Dempster ER (1987) An exact test for Hardy-Weinberg and multiple alleles. Biometrics 43:805–811PubMedCrossRefGoogle Scholar
  40. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051PubMedCrossRefGoogle Scholar
  41. Luttikhuizen PC, Drent J, van Delden W, Piersma T (2003) Spatially structured genetic variation in a broadcast spawning bivalve: quantitative vs. molecular traits. J Evol Biol 16:260–272PubMedCrossRefGoogle Scholar
  42. Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  43. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  44. Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16PubMedCrossRefGoogle Scholar
  45. Peliz A, Marchesiello P, Dubert J, Marta-Almelda M, Roy C, Queiroga H (2007) A study of crab larvae dispersal on the Western Iberian Shelf: physical processes. J Mar Syst 68:215–236CrossRefGoogle Scholar
  46. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  47. Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  48. Reece KS, Ribeiro WL, Gaffney PM, Carnegie RB, Allen SK Jr (2004) Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregation ratios. J Hered 95:346–352PubMedCrossRefGoogle Scholar
  49. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  50. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totow, NJ, pp 365–386Google Scholar
  51. Ryman N, Utter F, Laikre L (1995) Protection of intraspecific biodiversity of exploited fishes. Rev Fish Biol Fish 5:417–446CrossRefGoogle Scholar
  52. Santos AMP, Peliz A, Dubert J, Oliveira PB, Angelico MM, Re P (2004) Impact of a winter upwelling event on the distribution and transport of sardine (Sardina pilchardus) eggs and larvae off western Iberia: a retention mechanism. Cont Shelf Res 24:149–165CrossRefGoogle Scholar
  53. Santos AMP, Chicharo A, Dos Santos A, Moita T, Oliveira PB, Peliz A, Re P (2007) Physical-biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Prog Oceanogr 74:192–209CrossRefGoogle Scholar
  54. Sauvage C, Bierne N, Lapègue S, Boudry P (2007) Single nucleotide polymorphisms and their relationship to codon usage bias in the Pacific oyster Crassostrea gigas. Gene 406:13–22PubMedCrossRefGoogle Scholar
  55. Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371PubMedCrossRefGoogle Scholar
  56. Shanks AL, Brink L (2005) Upwelling, downwelling, and cross-shelf transport of bivalve larvae: test of a hypothesis. Mar Ecol Prog Ser 302:1–12CrossRefGoogle Scholar
  57. Skibinski DOF, Beardmore JA, Cross TF (1983) Aspects of the population genetics of Mytilus (Mytilidae; Mollusca) in the British Isles. Biol J Linn Soc 19:137–183CrossRefGoogle Scholar
  58. Vadopalas B, Leclair LL, Bentzen P (2004) Microsatellite and allozyme analyses reveal few genetic differences among spatially distinct aggregations of geoduck clams (Panopea abrupta, Conrad 1849). J Shellfish Res 23:693–706Google Scholar
  59. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  60. Varela MA, Gonzalez-Tizon A, Francisco-Candeira M, Martinez-Lage A (2007) Isolation and characterization of polymorphic microsatellite loci in the razor clam Ensis siliqua. Mol Ecol Notes 7:221–222CrossRefGoogle Scholar
  61. Varela MA, Martinez-Lage A, Gonzalez-Tizon AM (2009) Temporal genetic variation of microsatellite markers in the razor clam Ensis arcuatus (Bivalvia: Pharidae). J Mar Biol Assoc UK 89:1703–1707CrossRefGoogle Scholar
  62. Von Cosel R, Dörjes J, Mühlenhardt-Siegel U (1982) Die amerikanische Schwertmuschel Ensis directus (Conrad) in der Deutschen Bucht. I. Zoogeographie und Taxonomie im Vergleich mit den einheimischen Schwertmuschel-Arten. Senckenber Marit 14:147–173Google Scholar
  63. Was A, Gosling E, McCrann K, Mork J (2008) Evidence for population structuring of blue whiting (Micromesistius poutassou) in the northeast Atlantic. ICES J Mar Sci 65:216–225CrossRefGoogle Scholar
  64. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  65. Zhan A, Hu J, Hu X, Hui M, Wang M, Peng W, Huang X, Wang S, Lu W, Sun C, Bao Z (2009) Construction of microsatellite-based linkage maps and identification of size-related quantitative trait loci for Zhikong scallop (Chlamys farreri). Anim Genet 40:821–831PubMedCrossRefGoogle Scholar
  66. Zulliger DE, Tanner S, Ruch M, Ribi G (2009) Genetic structure of the high dispersal Atlanto-Mediterreanean sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci. Mar Biol 156:597–610CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alberto Arias-Pérez
    • 1
  • Juan Fernández-Tajes
    • 1
  • Miguel B. Gaspar
    • 2
  • Josefina Méndez
    • 1
  1. 1.Departamento de Biología Celular y MolecularUniversidade da CoruñaCoruñaSpain
  2. 2.Instituto Nacional de Recursos Biológicos/IPIMAROlhãoPortugal

Personalised recommendations