Biochemical Genetics

, Volume 50, Issue 3–4, pp 213–226 | Cite as

Molecular Cloning and Evolutionary Analysis of GJB6 in Mammals

  • Binghua Ru
  • Naijian Han
  • Guimei He
  • Kathryn Brayer
  • Shuyi Zhang
  • Zhe WangEmail author


GJB6 plays a crucial role in hearing. In mammals, bats use ultrasonic echolocation for orientation and locating prey. To investigate the evolution of GJB6 in mammals, we cloned the full-length coding region of GJB6 from 16 species of bats and 4 other mammal species and compared them with orthologous sequences in 11 other mammals. The results show purifying selection on GJB6 in mammals, as well as in the bat lineage, which indicates an important role for GJB6 in mammal hearing. We also found one unique amino acid substitution shared by 16 species of bats and 10 shared by two species of artiodactyls. This positioned the artiodactyls at an abnormal location in the gene tree. In addition, the cytoplasmic loop and carboxy terminus were more variable than other domains in all the mammals. These results demonstrate that GJB6 is basically conserved in mammals but has undergone relatively rapid evolution in particular lineages and domains.


Evolution GJB6 Mammals Molecular cloning 



This study was funded by grants awarded to SYZ under the Key Construction Program of the National “985” Project and “211” Project.


  1. Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368PubMedCrossRefGoogle Scholar
  2. Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111PubMedCrossRefGoogle Scholar
  3. Dahl E, Manthey D, Chen Y, Schwarz HJ, Chang YS, Lalley PA, Nicholson BJ, Willecke K (1996) Molecular cloning and functional expression of mouse connexin-30, a gap junction gene highly expressed in adult brain and skin. J Biol Chem 271:17903–17910PubMedCrossRefGoogle Scholar
  4. Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714PubMedCrossRefGoogle Scholar
  5. Essenfelder GM, Larderet G, Waksman G, Lamartine J (2005) Gene structure and promoter analysis of the human GJB6 gene encoding connexin 30. Gene 350:33–40PubMedCrossRefGoogle Scholar
  6. Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G (2003) Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals. J Comp Neurol 467:207–229PubMedCrossRefGoogle Scholar
  7. Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502PubMedCrossRefGoogle Scholar
  8. Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Della Monica M, Estivill X, Zelante L, Lang F, Gasparini P (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23:16–18PubMedGoogle Scholar
  9. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  10. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  11. Jan AY, Amin S, Ratajczak P, Richard G, Sybertz VP (2004) Genetic heterogeneity of KID syndrome: identification of a C×30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J Invest Dermatol 122:1108–1113PubMedCrossRefGoogle Scholar
  12. Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156PubMedCrossRefGoogle Scholar
  13. Kelley PM, Abe S, Askew JW, Smith SD, Usami S, Kimberling WJ (1999) Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Genomics 62:172–176PubMedCrossRefGoogle Scholar
  14. Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 191:101–118PubMedCrossRefGoogle Scholar
  15. Krutovskikh V, Yamasaki H (2000) Connexin gene mutations in human genetic diseases. Mutat Res 462:197–207PubMedCrossRefGoogle Scholar
  16. Krutovskikh VA, Yamasaki H, Tsuda H, Asamoto M (1998) Inhibition of intrinsic gap-junction intercellular communication and enhancement of tumorigenicity of the rat bladder carcinoma cell line BC31 by a dominant-negative connexin 43 mutant. Mol Carcinog 23:254–261PubMedCrossRefGoogle Scholar
  17. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388PubMedCrossRefGoogle Scholar
  18. Lamartine J, Munhoz Essenfelder G, Kibar Z, Lanneluc I, Callouet E, Laoudj D, Lemaitre G, Hand C, Hayflick SJ, Zonana J, Antonarakis S, Radhakrishna U, Kelsell DP, Christianson AL, Pitaval A, Der Kaloustian V, Fraser C, Blanchet-Bardon C, Rouleau GA, Waksman G (2000) Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet 26:142–144PubMedCrossRefGoogle Scholar
  19. Lautermann J, ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H, Jahnke K, Winterhager E (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294:415–420PubMedCrossRefGoogle Scholar
  20. Lautermann J, Frank HG, Jahnke K, Traub O, Winterhager E (1999) Developmental expression patterns of connexin26 and -30 in the rat cochlea. Dev Genet 25:306–311PubMedCrossRefGoogle Scholar
  21. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRefGoogle Scholar
  22. Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88:447–468PubMedCrossRefGoogle Scholar
  23. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  24. Parker C (1979) Birth, care and development of Chinese hog badgers. Int Zoo Yearb 19:182–185CrossRefGoogle Scholar
  25. Posada D, Crandall KA (1998) Model test: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  26. Pride (2000) Swaap: a tool for analyzing substitutions and similarity in multiple alignments. Version 1.0.2.
  27. Rabionet R, Lopez-Bigas N, Arbones ML, Estivill X (2002) Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med 8:205–212PubMedCrossRefGoogle Scholar
  28. Smith FJ, Morley SM, McLean WH (2002) A novel connexin 30 mutation in Clouston syndrome. J Invest Dermatol 118:530–532PubMedCrossRefGoogle Scholar
  29. Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: molecular evolutionary genetics analysis software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  30. Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584PubMedCrossRefGoogle Scholar
  31. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21PubMedCrossRefGoogle Scholar
  32. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  33. Wang X, Li L, Peracchia LL, Peracchia C (1996) Chimeric evidence for a role of the connexin cytoplasmic loop in gap junction channel gating. Pflugers Arch 431:844–852PubMedGoogle Scholar
  34. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedCrossRefGoogle Scholar
  35. Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209:177–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Binghua Ru
    • 1
  • Naijian Han
    • 2
  • Guimei He
    • 1
  • Kathryn Brayer
    • 3
  • Shuyi Zhang
    • 1
  • Zhe Wang
    • 1
    Email author
  1. 1.Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary ResearchEast China Normal UniversityShanghaiChina
  2. 2.Institute of ZoologyChinese Academy of SciencesBeijingChina
  3. 3.Yale Systems Biology Institute, Department of Ecology and Evolutionary BiologyYale UniversityWest HavenUSA

Personalised recommendations