Biochemical Genetics

, Volume 50, Issue 3–4, pp 159–179 | Cite as

Worldwide Distribution of Type II Diabetes-Associated TCF7L2 SNPs: Evidence for Stratification in Europe

Article

Abstract

Type II diabetes is a multifactorial disease with a complex etiology. Numerous genes have been implicated in disease pathogenesis. In particular, SNPs at the TCF7L2 locus have consistently shown strong associations with type II diabetes. This study characterizes the global distribution of type II diabetes-associated TCF7L2 SNPs utilizing HapMap, HGDP–CEPH, and Alfred databases and the literature. High frequencies of rs7903146(T), rs12255372(T), and rs7901695(C) SNPs are observed in Africa, Europe, and the Middle East, but they are reduced and almost absent in Southeast Asian and Native American populations. In contrast, rs11196218(A) has the highest frequency in Eurasia but is reduced in sub-Saharan African and Native American populations. Regional variations in rs7903146(T) follow a gradient of decreasing frequency from southern into northeastern Europe. These findings demonstrate extensive global and regional variations in the frequencies of TCF7L2 SNPs, which may contribute to differences in the incidence of type II diabetes worldwide.

Keywords

Diabetes TCF7L2 gene Europe Genetic gradient Natural selection 

References

  1. Alsmadi O, Al-Rubeaan K, Mohamed G, Alkayal F, Al-Saud H, Al-Saud NA, Al-Daghri N, Mohammad S, Meyer BF (2008) Weak or no association of TCF7L2 variants with Type 2 diabetes risk in an Arab population. BMC Med Genet 9:72PubMedCrossRefGoogle Scholar
  2. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80PubMedCrossRefGoogle Scholar
  3. Amoli MM, Amiri P, Tavakkoly-Bazzaz J, Charmchi E, Hafeziyeh J, Keramatipour M, Abiri M, Ranjbar SH, Larijani B (2010) Replication of TCF7L2 rs7903146 association with type 2 diabetes in an Iranian population. Genet Mol Biol 33:449–451PubMedCrossRefGoogle Scholar
  4. Bauchet M, McEvoy B, Pearson LN, Quillen EE, Sarkisian T, Hovhannesyan K, Deka R, Bradley DG, Shriver MD (2007) Measuring European population stratification with microarray genotype data. Am J Hum Genet 80:948–956PubMedCrossRefGoogle Scholar
  5. Bodhini D, Radha V, Dhar M, Narayani N, Mohan V (2007) The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism 56:1174–1178PubMedCrossRefGoogle Scholar
  6. Campbell MC, Tishkoff SA (2008) African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet 9:403–433PubMedCrossRefGoogle Scholar
  7. Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, Balkau B, Charpentier G, Pattou F, Stetsyuk V, Scharfmann R, Staels B, Fruhbeck G, Froguel P (2006) Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes 55:2903–2908PubMedCrossRefGoogle Scholar
  8. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, Nejjari C, Patsch W, Chikri M, Meyre D, Froguel P (2007) TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med 85:777–782PubMedCrossRefGoogle Scholar
  9. Cauchi S, Choquet H, Gutierrez-Aguilar R, Capel F, Grau K, Proenca C, Dina C, Duval A, Balkau B, Marre M, Potoczna N, Langin D, Horber F, Sorensen TI, Charpentier G, Meyre D, Froguel P (2008) Effects of TCF7L2 polymorphisms on obesity in European populations. Obesity (Silver Spring) 16:476–482CrossRefGoogle Scholar
  10. Chandak GR, Janipalli CS, Bhaskar S, Kulkarni SR, Mohankrishna P, Hattersley AT, Frayling TM, Yajnik CS (2007) Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 50:63–67PubMedCrossRefGoogle Scholar
  11. Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, Chuang LM (2007) Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes 56:2631–2637PubMedCrossRefGoogle Scholar
  12. Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR, Mahajan A, Chavali S, Kumar MV, Prakash S, Dwivedi OP, Ghosh S, Yajnik CS, Tandon N, Bharadwaj D, Chandak GR (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5, 164 Indians. Diabetes 59:2068–2074PubMedCrossRefGoogle Scholar
  13. Christopoulos P, Mastorakos G, Gazouli M, Panidis D, Deligeoroglou E, Katsikis I, Papadias K, Diamandi-Kandarakis E, Creatsas G (2008) Genetic variants in TCF7L2 and KCNJ11 genes in a Greek population with polycystic ovary syndrome. Gynecol Endocrinol 24:486–490PubMedCrossRefGoogle Scholar
  14. Ereqat S, Nasereddin A, Cauchi S, Azmi K, Abdeen Z, Amin R (2010) Association of a common variant in TCF7L2 gene with type 2 diabetes mellitus in the Palestinian population. Acta Diabetol 47(Suppl 1):195–198PubMedCrossRefGoogle Scholar
  15. Ezzidi I, Mtiraoui N, Cauchi S, Vaillant E, Dechaume A, Chaieb M, Kacem M, Almawi WY, Froguel P, Mahjoub T, Vaxillaire M (2009) Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study. BMC Med Genet 10:33PubMedCrossRefGoogle Scholar
  16. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23 K variant is associated with type 2 diabetes. Diabetes 52:568–572PubMedCrossRefGoogle Scholar
  17. Gonzalez-Sanchez JL, Martinez-Larrad MT, Zabena C, Perez-Barba M, Serrano-Rios M (2008) Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin: insulin ratio in the Spanish population. Diabetologia 51:1993–1997PubMedCrossRefGoogle Scholar
  18. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323PubMedCrossRefGoogle Scholar
  19. Guo T, Hanson RL, Traurig M, Muller YL, Ma L, Mack J, Kobes S, Knowler WC, Bogardus C, Baier LJ (2007) TCF7L2 is not a major susceptibility gene for type 2 diabetes in Pima Indians: analysis of 3, 501 individuals. Diabetes 56:3082–3088PubMedCrossRefGoogle Scholar
  20. Hancock AM, Witonsky DB, Gordon AS, Eshel G, Pritchard JK, Coop G, Di Rienzo A (2008) Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genet 4:e32PubMedCrossRefGoogle Scholar
  21. Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I, Benediktsson R, Hinney A, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Schafer H, Faruque M, Doumatey A, Zhou J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Sigurdsson G, Hebebrand J, Pedersen O, Thorsteinsdottir U, Gulcher JR, Kong A, Rotimi C, Stefansson K (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225PubMedCrossRefGoogle Scholar
  22. Hill EW, Jobling MA, Bradley DG (2000) Y-chromosome variation and Irish origins. Nature 404:351–352PubMedCrossRefGoogle Scholar
  23. Kimber CH, Doney AS, Pearson ER, McCarthy MI, Hattersley AT, Leese GP, Morris AD, Palmer CN (2007) TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels. Diabetologia 50:1186–1191PubMedCrossRefGoogle Scholar
  24. Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A, Balascakova M, Bertranpetit J, Bindoff LA, Comas D, Holmlund G, Kouvatsi A, Macek M, Mollet I, Parson W, Palo J, Ploski R, Sajantila A, Tagliabracci A, Gether U, Werge T, Rivadeneira F, Hofman A, Uitterlinden AG, Gieger C, Wichmann HE, Ruther A, Schreiber S, Becker C, Nurnberg P, Nelson MR, Krawczak M, Kayser M (2008) Correlation between genetic and geographic structure in Europe. Curr Biol 18:1241–1248PubMedCrossRefGoogle Scholar
  25. Lin Y, Li P, Cai L, Zhang B, Tang X, Zhang X, Li Y, Xian Y, Yang Y, Wang L, Lu F, Liu X, Rao S, Chen M, Ma S, Shi Y, Bao M, Wu J, Yang J, Yang Z (2010) Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med Genet 11:97PubMedCrossRefGoogle Scholar
  26. Loos RJ, Franks PW, Francis RW, Barroso I, Gribble FM, Savage DB, Ong KK, O’Rahilly S, Wareham NJ (2007) TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population. Diabetes 56:1943–1947PubMedCrossRefGoogle Scholar
  27. Mayans S, Lackovic K, Lindgren P, Ruikka K, Agren A, Eliasson M, Holmberg D (2007) TCF7L2 polymorphisms are associated with type 2 diabetes in northern Sweden. Eur J Hum Genet 15:342–346PubMedCrossRefGoogle Scholar
  28. McEvoy B, Richards M, Forster P, Bradley DG (2004) The Longue Duree of genetic ancestry: multiple genetic marker systems and Celtic origins on the Atlantic facade of Europe. Am J Hum Genet 75:693–702PubMedCrossRefGoogle Scholar
  29. Ng MC, Tam CH, Lam VK, So WY, Ma RC, Chan JC (2007) Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese. J Clin Endocrinol Metab 92:3733–3737PubMedCrossRefGoogle Scholar
  30. Pappa KI, Gazouli M, Economou K, Daskalakis G, Anastasiou E, Anagnou NP, Antsaklis A (2011) Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population. Gynecol Endocrinol 27(4):267–272PubMedCrossRefGoogle Scholar
  31. Parra EJ, Cameron E, Simmonds L, Valladares A, McKeigue P, Shriver M, Wacher N, Kumate J, Kittles R, Cruz M (2007) Association of TCF7L2 polymorphisms with type 2 diabetes in Mexico City. Clin Genet 71:359–366PubMedCrossRefGoogle Scholar
  32. Pettersen E, Skorpen F, Kvaloy K, Midthjell K, Grill V (2010) Genetic heterogeneity in latent autoimmune diabetes is linked to various degrees of autoimmune activity: results from the Nord-Trondelag Health Study. Diabetes 59:302–310PubMedCrossRefGoogle Scholar
  33. Pirie FJ, Motala AA, Pegoraro RJ, Paruk IM, Govender T, Rom L (2010) Variants in PPARG, KCNJ11, TCF7L2, FTO, and HHEX genes in South African subjects of Zulu descent with type 2 diabetes. African J Diabetes Med 18:12–16Google Scholar
  34. Potapov VA, Chistiakova DA, Shamkhalovab MS, Shestakovab MV, Nosikova VV (2009) TCF7L2 rs12255372 and SLC30A8 rs13266634 confer susceptibility to type 2 diabetes in a Russian population. Diabetes Metab Syndr: Clin Res Rev 3:219–223CrossRefGoogle Scholar
  35. Rees SD, Bellary S, Britten AC, O’Hare JP, Kumar S, Barnett AH, Kelly MA (2008) Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population. BMC Med Genet 9:8PubMedCrossRefGoogle Scholar
  36. Ren Q, Han XY, Wang F, Zhang XY, Han LC, Luo YY, Zhou XH, Ji LN (2008) Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia 51:1146–1152PubMedCrossRefGoogle Scholar
  37. Rosenberg NA (2006) Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 70:841–847PubMedCrossRefGoogle Scholar
  38. Saadi H, Nagelkerke N, Carruthers SG, Benedict S, Abdulkhalek S, Reed R, Lukic M, Nicholls MG (2008) Association of TCF7L2 polymorphism with diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of Emirati subjects. Diabetes Res Clin Pract 80:392–398PubMedCrossRefGoogle Scholar
  39. Sanghera DK, Nath SK, Ortega L, Gambarelli M, Kim-Howard X, Singh JR, Ralhan SK, Wander GS, Mehra NK, Mulvihill JJ, Kamboh MI (2008) TCF7L2 polymorphisms are associated with type 2 diabetes in Khatri Sikhs from North India: genetic variation affects lipid levels. Ann Hum Genet 72:499–509PubMedCrossRefGoogle Scholar
  40. Schafer SA, Tschritter O, Machicao F, Thamer C, Stefan N, Gallwitz B, Holst JJ, Dekker JM, t Hart LM, Nijpels G, van Haeften TW, Haring HU, Fritsche A (2007) Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 50:2443–2450PubMedCrossRefGoogle Scholar
  41. Scott LJ, Bonnycastle LL, Willer CJ, Sprau AG, Jackson AU, Narisu N, Duren WL, Chines PS, Stringham HM, Erdos MR, Valle TT, Tuomilehto J, Bergman RN, Mohlke KL, Collins FS, Boehnke M (2006) Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample. Diabetes 55:2649–2653PubMedCrossRefGoogle Scholar
  42. Seldin MF, Shigeta R, Villoslada P, Selmi C, Tuomilehto J, Silva G, Belmont JW, Klareskog L, Gregersen PK (2006) European population substructure: clustering of northern and southern populations. PLoS Genet 2:e143PubMedCrossRefGoogle Scholar
  43. Stanyon R, Sazzini M, Luiselli D (2009) Timing the first human migration into eastern Asia. J Biol 8:18PubMedCrossRefGoogle Scholar
  44. Szepietowska B, Moczulski D, Wawrusiewicz-Kurylonek N, Grzeszczak W, Gorska M, Szelachowska M (2010) Transcription factor 7-like 2-gene polymorphism is related to fasting C peptide in latent autoimmune diabetes in adults (LADA). Acta Diabetol 47:83–86PubMedCrossRefGoogle Scholar
  45. van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B (2010) The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil 17(Suppl 1):3–8Google Scholar
  46. van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A, Strengman E, van Haeften TW, Hofker MH, Wijmenga C (2007) Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort. Diabetologia 50:59–62PubMedCrossRefGoogle Scholar
  47. Wang S, Lewis CM, Jakobsson M, Ramachandran S, Ray N, Bedoya G, Rojas W, Parra MV, Molina JA, Gallo C, Mazzotti G, Poletti G, Hill K, Hurtado AM, Labuda D, Klitz W, Barrantes R, Bortolini MC, Salzano FM, Petzl-Erler ML, Tsuneto LT, Llop E, Rothhammer F, Excoffier L, Feldman MW, Rosenberg NA, Ruiz-Linares A (2007) Genetic variation and population structure in Native Americans. PLoS Genet 3:e185PubMedCrossRefGoogle Scholar
  48. Wen J, Ronn T, Olsson A, Yang Z, Lu B, Du Y, Groop L, Ling C, Hu R (2010) Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One 5:e9153PubMedCrossRefGoogle Scholar
  49. Xu P, Che Y, Cao Y, Wu X, Sun H, Liang F, Sun J, Ke L, Yi L, Wang Y (2010) Polymorphisms of TCF7L2 and HHEX genes in Chinese women with polycystic ovary syndrome. J Assist Reprod Genet 27:23–28PubMedCrossRefGoogle Scholar
  50. Zampetti S, Spoletini M, Petrone A, Capizzi M, Arpi ML, Tiberti C, Di Pietro S, Bosi E, Pozzilli P, Giorgino F, Buzzetti R (2010) Association of TCF7L2 gene variants with low GAD autoantibody titre in LADA subjects (NIRAD Study 5). Diabet Med 27:701–704PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.DublinIreland

Personalised recommendations