Advertisement

Biochemical Genetics

, Volume 49, Issue 3–4, pp 139–152 | Cite as

Identification, Inheritance, and Variation of Microsatellite Markers in the Black Scallop Mimachlamys varia

  • Alberto Arias
  • Ruth Freire
  • Juan Pablo De La Roche
  • Guillermo Román
  • Josefina Méndez
  • Ana InsuaEmail author
Article

Abstract

Five polymorphic microsatellite loci were identified in the black scallop Mimachlamys varia after construction of a genomic library enriched for (GT)n. To examine the transmission pattern of microsatellite alleles, several families were created and genotypes scored for three loci. The expected Mendelian ratios were found in 12 of 14 segregations examined. Unexpected segregations may be explained by a genotyping error (allelic dropout), given that when a specific allele was treated as dominant, the phenotypic ratios conformed to Mendelian expectations. The five loci were also examined in two samples from the Spanish coast. The two localities displayed similar mean values for the number of alleles per locus (7.2–8.4), allelic richness (7.2–7.9), and observed (0.389–0.484) and expected heterozygosity (0.545–0.618). Significant Hardy–Weinberg deviations were observed at three loci, with heterozygote deficiency occurring in all cases. Global multilocus θ value and allele frequencies at one locus revealed significant differentiation between the two localities.

Keywords

Mimachlamys varia Microsatellite markers Segregation analysis Genetic diversity Population differentiation 

Notes

Acknowledgments

We thank Dr. Ricardo Pérez and Dr. Pedro Cruz for assisting in the microsatellite genotyping, Jose García Gil for technical assistance in the laboratory, and anonymous reviewers for constructive comments. This study was supported by Ministerio de Ciencia y Tecnología of Spain through project ACU01-022-C2-2.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped Blast and PSI-Blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. An HS, Park JY, Lee YG, Lee DS, Lee C (2005) Ten polymorphic microsatellite loci in the giant scallop (Mizuhopecten yessoensis). Mol Ecol Notes 5:806–808CrossRefGoogle Scholar
  3. Arias A, Freire R, Méndez J, Insua A (2009) Intron characterization and their potential as molecular markers for population studies in the scallops Aequipecten opercularis and Mimachlamys varia. Hereditas 142:46–57CrossRefGoogle Scholar
  4. Arias A, Freire R, Méndez J, Insua A (2010) Isolation and characterization of microsatellite markers in the queen scallop Aequipecten opercularis and their application to a population genetic study. Aquat Living Resour 23:199–207CrossRefGoogle Scholar
  5. Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165PubMedCrossRefGoogle Scholar
  6. Beaumont AR, Beveridge CM (1984) Electrophoretic survey of genetic variation in Pecten maximus, Chlamys opercularis, Chlamys varia and Chlamys distorta from the Irish Sea. Mar Biol 81:299–306CrossRefGoogle Scholar
  7. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) Genetix 4.05, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France). Available from http://www.genetix.univ-montp2.fr/genetix/genetix.htm
  8. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580PubMedCrossRefGoogle Scholar
  9. Benzie JAH, Smith-Keune C (2006) Microsatellite variation in Australian and Indonesian pearl oyster Pinctada maxima populations. Mar Ecol Prog Ser 314:197–211CrossRefGoogle Scholar
  10. Billote N, Lagoda PJL, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  11. Brookfield JF (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455PubMedGoogle Scholar
  12. Chambers GK, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B 126:455–476PubMedCrossRefGoogle Scholar
  13. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  14. Chistiakov DA, Hellemans B, Volckaert FAM (2006) Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255:1–29CrossRefGoogle Scholar
  15. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. BioTechniques 20:758–760PubMedGoogle Scholar
  16. Elfstrom CM, Smith CT, Jones KC, Seeb JE (2005) Characterization of 16 polymorphic microsatellite loci in weathervane scallop Patinopecten caurinus. Mol Ecol Notes 5:514–516CrossRefGoogle Scholar
  17. Fernández-Moreno M, Arias-Pérez A, Freire R, Méndez J (2008) Genetic analysis of Aequipecten opercularis and Mimachlamys varia (Bivalvia: Pectinidae) in several Atlantic and Mediterranean localities, revealed by mitochondrial PCR-RFLPs: a preliminary study. Aquac Res 39:474–481CrossRefGoogle Scholar
  18. Fernández-Tajes J, Méndez J (2007) Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region. J Agric Food Chem 55:7278–7282PubMedCrossRefGoogle Scholar
  19. Gosling EM, Burnell GM (1988) Evidence for selective mortality in Chlamys varia (L) transplant experiments. J Mar Biol Assoc UK 68:251–258CrossRefGoogle Scholar
  20. Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Institut d’Ecologie, Université de Lausanne, Dorigny, Switzerland. Available from http://www2.unil.ch/popgen/softwares/fstat.htm
  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. Hedgecock D, Li G, Hubert S, Bucklin K, Ribes V (2004) Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. J Shellfish Res 23:379–385Google Scholar
  23. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638PubMedGoogle Scholar
  24. Hui M, Bao Z, Zhan A, Hu X, Lu W, Chang D, Hu J (2006) Ten polymorphic dinucleotide microsatellite markers of the noble scallop Chlamys nobilis. Mol Ecol Notes 6:1033–1035CrossRefGoogle Scholar
  25. Iglesias P, Louro A, Román G (2008) How does reproduction and recruitment patterns match? The case of Chlamys varia in Ría de Betanzos-Sada, NW Spain. 2nd Mollusc Physiology Conference. September 1–4, Brest, France. Book of abstracts, p 119Google Scholar
  26. Jeffery KJ, Keller LF, Arcese P, Bruford MW (2001) The development of microsatellite loci in the song sparrow, Melospiza melodia (Aves) and genotyping errors associated with good quality DNA. Mol Ecol Notes 1:11–13CrossRefGoogle Scholar
  27. Launey S, Hedgecock D (2001) High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159:255–265PubMedGoogle Scholar
  28. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465PubMedCrossRefGoogle Scholar
  29. Louis EJ, Dempster ER (1987) An exact test for Hardy–Weinberg and multiple alleles. Biometrics 43:805–811PubMedCrossRefGoogle Scholar
  30. Louro A, Roche DL, Campos MJ, Román G (2003) Hatchery rearing of the black scallop, Chlamys varia (L.). J Shellfish Res 22:95–99Google Scholar
  31. Mathers NF (1975) Environmental variability at the phosphoglucose isomerase locus in the genus Chlamys. Biochem Syst Ecol 3:123–127CrossRefGoogle Scholar
  32. McGoldrick DJ, Hedgecock D, English LJ, Baoprasertkul P, Ward RD (2000) The transmission of microsatellite alleles in Australian and North American stocks of the Pacific oyster (Crassostrea gigas): selection and null alleles. J Shellfish Res 19:779–788Google Scholar
  33. Meglécz E (2007) Microfamily (version 1): a computer program for detecting flanking-region similarities among different microsatellite loci. Mol Ecol Notes 7:18–20CrossRefGoogle Scholar
  34. Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Natl Acad Sci USA 100:4334–4339PubMedCrossRefGoogle Scholar
  35. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  36. Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  37. Reece KS, Ribeiro WL, Gaffney PM, Carnegie RB, Allen SK Jr (2004) Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): confirmation of null alleles and non-Mendelian segregation ratios. J Hered 95:346–352PubMedCrossRefGoogle Scholar
  38. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  39. Ríos C, Sanz S, Saavedra C, Pena JB (2002) Allozyme variation in populations of scallops, Pecten jacobaeus (L.) and P. maximus (L.) (Bivalvia: Pectinidae), across the Almeria-Oran front. J Exp Mar Biol Ecol 267:223–244CrossRefGoogle Scholar
  40. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  41. Sobolewska H, Beaumont AR (2005) Genetic variation at microsatellite loci in northern populations of the European flat oyster (Ostrea edulis). J Mar Biol Assoc UK 85:955–960CrossRefGoogle Scholar
  42. Soulsbury CD, Iossa G, Edwards KJ, Baker PJ, Harris S (2007) Allelic dropout from a high-quality DNA source. Conserv Genet 8:733–738CrossRefGoogle Scholar
  43. Taris N, Baron S, Sharbel TF, Sauvage C, Boudry P (2005) A combined microsatellite multiplexing and boiling DNA extraction method for high-throughput parentage analyses in the Pacific oyster (Crassostrea gigas). Aquac Res 36:516–518CrossRefGoogle Scholar
  44. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MicroChecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  45. Wagner HP (1991) Review of the European Pectinidae. Vita Marina 41:1–48Google Scholar
  46. Watts PC, Mallanaphy WJ, McCarthy C, Beukers-Stewart BD, Mosley MWJ, Brand AR, Saccheri IJ (2005) Polymorphic microsatellite loci isolated from the great scallop, Pecten maximus (Bivalvia: Pectinidae). Mol Ecol Notes 5:902–904CrossRefGoogle Scholar
  47. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  48. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16PubMedCrossRefGoogle Scholar
  49. Zhan AB, Bao ZM, Hui M, Wang ML, Zhao HB, Lu W, Hu XL, Hu JJ (2007) Inheritance pattern of EST-SSRs in self-fertilized larvae of the bay scallop Argopecten irradians. Ann Zool Fenn 44:259–268Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alberto Arias
    • 1
  • Ruth Freire
    • 1
  • Juan Pablo De La Roche
    • 2
  • Guillermo Román
    • 2
  • Josefina Méndez
    • 1
  • Ana Insua
    • 1
    Email author
  1. 1.Departamento de Biología Celular y MolecularUniversidade da CoruñaA CoruñaSpain
  2. 2.Instituto Español de OceanografíaCentro Oceanográfico de A CoruñaA CoruñaSpain

Personalised recommendations