Biochemical Genetics

, Volume 48, Issue 9–10, pp 789–806 | Cite as

Development of Molecular Tools for Characterization and Genetic Diversity Analysis in Tunisian Fig (Ficus carica) Cultivars

  • Khaled Chatti
  • Ghada Baraket
  • Ahmed Ben Abdelkrim
  • Olfa Saddoud
  • Messaoud Mars
  • Mokhtar Trifi
  • Amel Salhi Hannachi
Article

Abstract

Fig, Ficus carica L., is a useful genetic resource for commercial cultivation. In this study, RAPD (60), ISSR (48), RAMPO (63), and SSR (34) markers were compared to detect polymorphism and to establish genetic relationships among Tunisian fig tree cultivars. The statistical procedures conducted on the combined data show considerable genetic diversity, and the tested markers discriminated all fig genotypes studied. The identification key established on the basis of SSR permitted the unambiguous discrimination of cultivars and confirmed the reliability of SSR for fingerprinting fig genotypes. The study findings are discussed in relation to the establishment of a national reference collection that will aid in the conservation of Tunisian fig resources.

Keywords

Ficus carica L. ISSR RAMPO RAPD SSR 

References

  1. Akbulut M, Ercisli S, Karlidag H (2009) RAPD-based study of genetic variation and relationships among wild fig genotypes in Turkey. Genet Mol Res 8(3):1109–1115CrossRefPubMedGoogle Scholar
  2. Belkhir K (2000). Genetix version 4.01. Laboratoire Génome et Populations, CNRS UPR 9060, Université de MontpellierGoogle Scholar
  3. Berg CC (2003) Flora melesiana precursor for the treatment of Moraceae 1: the main subdivision of Ficus: the subgenera. Blumea 48:176–178Google Scholar
  4. Cabrita LF, Aksoy U, Hepaksoy S, Leitão JM (2001) Suitability of isozyme, RAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Sci Hortic 87:261–273CrossRefGoogle Scholar
  5. Chakraborty R, Jin L (1993) A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distances. In: Chakraborty R, Epplen JT, Jefferys AJ (eds) DNA fingerprinting: state of the science. Birkhäuser Verlag, Basel, pp 153–175Google Scholar
  6. Chatti K, Salhi Hannachi A, Mars M, Marrakchi M, Trifi M, (2004a) Analyse de la diversité génétique de cultivars tunisiens de figuier (Ficus carica L.) à l’aide de caractères morphologiques. Fruits 59(1):49–61Google Scholar
  7. Chatti K, Salhi Hannachi A, Mars M, Marrakchi M, Trifi M (2004b) Genetic diversity and phylogenic relationships in Tunisian fig (Ficus carica L.) cultivars mediated by RAPD. Biologia Tunisie 1(2):1–4Google Scholar
  8. Chatti K, Saddoud O, Salhi Hannachi A, Mars M, Marrakchi M, Trifi M (2007) Inferring of genetic diversity and relationships in a Tunisian fig (Ficus carica L.) germplasm collection by random amplified microsatellite polymorphisms. J Integr Plant Biol 49:386–391CrossRefGoogle Scholar
  9. Dellaporta SL, Wood J, Hicks JB (1984) Maize DNA miniprep. In Malmberg R, Messing J, Sussex I (eds) Molecular biology of plants. Cold Spring Harbor Laboratory, Cold Spring Harbor Press, New York, pp 36–38Google Scholar
  10. Dieringer D, Schlötterer C (2003) Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 2:1–3Google Scholar
  11. Felsenstein J (1995) Phylip (Phylogeny Interference Package) version 3.5 c. Department of Genetics, University of Washington, SeattleGoogle Scholar
  12. Gilbert JE, Lewis RV, Wilkinson MJ, Caligari PDS (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98:1125–1131CrossRefGoogle Scholar
  13. Giraldo E, Viruel MA, López-Corrales M, Hormaza JI (2005) Characterization and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J Hortic Sci Biotechnol 80:217–224Google Scholar
  14. Hedfi J, Trifi M, Salhi Hannachi A, Rhouma A, Marrakchi M (2003) Morphological and isoenzymatic polymorphism in Tunisian fig (Ficus carica L.) collection. Acta Hortic 605:319–325Google Scholar
  15. Hidetoshi I, Hitoshi N, Keita H, Mitsuo A, Takao N (2009) Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genet Resour Crop Evol 56(2):201–209CrossRefGoogle Scholar
  16. Ikegami H, Nogata H, Hirashima K, Awamura M, Nakahara T (2009) Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genet Resour Crop Evol 56:201–209CrossRefGoogle Scholar
  17. Ikten H, Mutlu N, Gulsen O, Kocatas H, Aksoy U (2010) Elucidating genetic relationships, diversity and population structure among the Turkish female figs. Genetica 138:169–177CrossRefPubMedGoogle Scholar
  18. Khadari B, Lashermes PH, Kjellberg F (1995) RAPD fingerprints for identification and genetic characterization of fig (Ficus carica L.) genotypes. J Genet Breed 49:77–86Google Scholar
  19. Khadari B, Hochu I, Santoni S, Kjelberg F (2001) Identification and characterization of microsatellite loci in the common fig (Ficus carica) and representative species of the genus Ficus. Mol Ecol Notes 1:191–193CrossRefGoogle Scholar
  20. Khadari B, Hochu I, Bouzid L, Santoni S, Roger JP, Kjelberg F (2003) The use of microsatellite markers for identification and genetic diversity evaluation of the fig collection in CBNMP. Acta Hortic 605:77–86Google Scholar
  21. Khadari B, Oukabli A, Ater M, Mamouni A, Roger JP, Kjellberg F (2005) Molecular characterization of Moroccan fig germplsam using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. Hortscience 40:29–32Google Scholar
  22. Kjelberg F, Gouyon PH, Ibrahim M, Raumond M, Valdeyron G (1987) The stability of the symbiosis between dioecious figs and theirs pollinators: a study of Ficus carica L. and Blastophaga Psenes L. Int J Org Evol 41(4):693–704Google Scholar
  23. Mars M, Carraut A, Marrakchi M, Gouiaa M, Gaaliche F (1994) Ressources génétiques fruitières en Tunisie (poirier, oranger, figuier, grenadier). Plant Genet Resour Newsl 100:14–17Google Scholar
  24. Mars M, Marrakchi M, Chelbi T (1998) Multivariate analysis of fig (Ficus carica L.) germplasm southern Tunisia. Acta Hortic 480:75–81Google Scholar
  25. Nei M (1978) Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  26. Nei M, Li WH (1979) Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 74:5267–5273Google Scholar
  27. Oukabli A, Khadari B (2005) Caractérisation des variétés polyclonales marocaines de figuiers, Ficus carica L. Fruits 60:47–54CrossRefGoogle Scholar
  28. Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  29. Papadopoulou K, Ehaliotis C, Tourna M, Kastanis P, Karydis I, Zervadis G (2002) Genetic relatedness among dioecious Ficus carica L. cultivars by random amplified polymorphic DNA analysis, and evaluation of agronomic and morphological characters. Genetica 114:183–194CrossRefPubMedGoogle Scholar
  30. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  31. Rhouma A (1996). Les ressources phytogénétiques oasiennes: le figuier (Ficus carica L.). In: Proceedings of the 3èmes Journées Nationales sur les Acquis de la Recherche Agronomique, Vétérinaire et Halieutique, Nabeul, p 29Google Scholar
  32. Rout GR, Aparajita S (2009) Genetic relationships among 23 Ficus accessions using inter simple sequence repeat markers. J Crop Sci Biotechnol 12:91–96CrossRefGoogle Scholar
  33. Sadder MT, Ateyyeh AF (2006) Molecular assessment of polymorphism among local Jordanian genotypes of the common fig (Ficus carica L.). Sci Hortic 107:347–351CrossRefGoogle Scholar
  34. Saddoud O, Chatti K, Salhi Hannachi A, Mars M, Rhouma A, Marrakchi M, Trifi M (2007) Genetic diversity of Tunisian figs (Ficus carica L.) as revealed by nuclear microsatellites. Hereditas 144:149–157CrossRefPubMedGoogle Scholar
  35. Salhi Hannachi A, Trifi M, Zehdi S, Hedfi J, Mars M, Rhouma A, Marrakchi M (2004) Inter simple sequence repeat fingerprints to assess genetic diversity in Tunisian fig (Ficus carica L.) germplasm. Genet Resour Crop Evol 51(3):269–272CrossRefGoogle Scholar
  36. Salhi Hannachi A, Chatti K, Mars M, Marrakchi M, Trifi M (2005) Comparative analysis of genetic diversity in two Tunisian collections of fig cultivars based on random amplified polymorphic DNA and inter simple sequence repeats fingerprints. Genet Resour Crop Evol 52(5):563–573CrossRefGoogle Scholar
  37. Salhi Hannachi A, Chatti K, Saddoud O, Mars M, Rhouma A, Marrakchi M, Trifi M (2006) Genetic diversity of different Tunisian fig (Ficus carica L.) collections revealed by RAPD fingerprints. Hereditas 143:15–22CrossRefPubMedGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New YorkGoogle Scholar
  39. Sneath PMA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  40. StatSoft, Inc (2001) Statistica (data analysis software systems), version 6. StatSoft, Inc., Tulsa. www.statsoft.com
  41. Storey WB (1975) Figs. In: Janick J, Moore J (eds) Advances in fruit breeding. Purdue University Press, Indiana, pp 568–589Google Scholar
  42. Weiblen GD (2000) Phylogenetic relationships of functionally diocious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. Am J Bot 87(9):1342–1357CrossRefPubMedGoogle Scholar
  43. Weir BS, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  44. Zehdi S, Trifi M, Ould Mohamed Salem A, Rhouma A, Marrakchi M (2002) Survey of inter simple sequence repeat (ISSR) in Tunisian date-palms (Phoenix dactylifera L.). J Genet Breed 56:77–83Google Scholar
  45. Zehdi S, Trifi M, Billotte N, Marrakchi M, Pintaud JC (2004) Genetic diversity of Tunisian date palms (Phoenix dactylifera L.) revealed by nuclear microsatellite polymorphism. Hereditas 141(3):278–287CrossRefPubMedGoogle Scholar
  46. Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Khaled Chatti
    • 1
    • 3
  • Ghada Baraket
    • 1
  • Ahmed Ben Abdelkrim
    • 1
  • Olfa Saddoud
    • 1
  • Messaoud Mars
    • 2
  • Mokhtar Trifi
    • 1
  • Amel Salhi Hannachi
    • 1
  1. 1.Laboratoire de Génétique Moléculaire, Immunologie et BiotechnologieFaculté des Sciences de TunisEl Manar, TunisTunisia
  2. 2.Institut Supérieur d’Agronomie, Chott MariamSousseTunisia
  3. 3.Faculté des Sciences de GafsaGafsaTunisia

Personalised recommendations