Advertisement

Biochemical Genetics

, 47:892 | Cite as

Necessity of Quantum Coherence to Account for the Spectrum of Time-Dependent Mutations Exhibited by Bacteriophage T4

  • W. Grant CooperEmail author
Article

Abstract

Transcriptase measurements of quantum expectations due to time-dependent coherent states populating informational DNA base-pair sites, designated by G–C → *G–*C, G–C → G′–C′, and A–T → *A–*T, provide a model for transcription and replication of time-dependent DNA lesions exhibited by bacteriophage T4. Coherent states are introduced as consequences of hydrogen bond arrangement, keto-amino → enol-imine, where product protons are shared between two sets of indistinguishable electron lone-pairs and thus participate in coupled quantum oscillations at frequencies of ~1013 s−1. The transcriptase deciphers and executes genetic specificity instructions by implementing measurements on superposition proton states at *G–*C, G′–C′, and *A–*T sites in an interval Δt ≪ 10−13 s. Decohered states participate in Topal–Fresco replication, which introduces substitutions *C → T, *G → A, G′ → T, and G′ → C, but superposition *A–*T states are deleted. These results imply an evolutionary shift favoring A–T richness.

Keywords

Molecular evolution mechanism Transcription enhancement of mutation Transcriptase quantum processing Coherent states in DNA Entanglement Replication T4 phage genetics 

Notes

Acknowledgments

Insightful questions and discussions by Altonie Barber and Nikolay Sarychev are sincerely appreciated. I am grateful to an anonymous reviewer for calling my attention to an important reference and for identifying quantum coherence and decoherence as central issues in this report.

Supplementary material

10528_2009_9293_MOESM1_ESM.doc (32 kb)
(DOC 33 kb)

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New YorkGoogle Scholar
  2. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90:11995–11999CrossRefPubMedGoogle Scholar
  3. Auerbach C (1959) Spontaneous mutations in dry spores of Neurospora crassa. Z Vererbungslehre 90:335–346CrossRefGoogle Scholar
  4. Baltz RH, Bingham PM, Drake JW (1976) Heat mutagenesis in bacteriophage T4: The transition pathway. Proc Natl Acad Sci USA 73:1269–1273CrossRefPubMedGoogle Scholar
  5. Bell NF, Sawyer RF, Volkas RR (2002) Entanglement and quantal coherence: study of two limiting cases of rapid systems-bath interactions. Phys Rev A65:052105-1–052105-12Google Scholar
  6. Benzer S (1961) On the topography of the genetic fine structure. Proc Natl Acad Sci USA 47:403–415CrossRefPubMedGoogle Scholar
  7. Bingham PM, Baltz RH, Ripley LS, Drake JW (1976) Heat mutagenesis in bacteriophage T4: The transversion pathway. Proc Natl Acad Sci USA 73:4159–4163CrossRefPubMedGoogle Scholar
  8. Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4:216–224CrossRefPubMedGoogle Scholar
  9. Bromham LD, Rambaut A, Hamdy MD, Penny D (2000) The power of relative rates tests depends on the data. J Mol Evol 50:296–301PubMedGoogle Scholar
  10. Caldin EF (1968) Tunneling in proton transfer reactions in solution. Chem Rev 69:135–156CrossRefGoogle Scholar
  11. Cooper WG (1993) Roles of evolution, quantum mechanics and point mutations in origins of cancer. Cancer Biochem Biophys 13:147–170PubMedGoogle Scholar
  12. Cooper WG (1994) T4 phage evolution data in terms of a time-dependent Topal-Fresco mechanism. Biochem Genet 32:383–395CrossRefPubMedGoogle Scholar
  13. Cooper WG (1995) Evolutionary origin of expandable G-C rich triplet repeat DNA sequences. Biochem Genet 33:173–181CrossRefPubMedGoogle Scholar
  14. Cooper WG (1996) Hypothesis on a causal link between EMF and an evolutionary class of cancer and spontaneous abortion. Cancer Biochem Biophys 15:151–170PubMedGoogle Scholar
  15. Cooper WG (2009) Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states. Biosystems 97(2):73–89CrossRefPubMedGoogle Scholar
  16. Cooper DN, Youssoufian H (1988) The CpG dinucleotide and human genetic diseases. Hum Genet 78:151–155CrossRefPubMedGoogle Scholar
  17. Cortopassi G, Liu Y (1995) Genotypic selection of mitochondrial and oncogenic mutations in human tissue suggest mechanisms of age-related pathophysiology. Mutat Res 338:151–159PubMedGoogle Scholar
  18. Drake JW (1966) Spontaneous mutations accumulating in bacteriophage T4 in the complete absence of DNA replication. Proc Natl Acad Sci USA 55:738–743CrossRefPubMedGoogle Scholar
  19. Drake JW, Baltz RH (1976) The biochemistry of mutagenesis. Ann Rev Biochem 45:11–37CrossRefPubMedGoogle Scholar
  20. Drake JW, McGuire J (1967) Characteristics of mutations appearing spontaneously in extracellular particles of bacteriophage T4. Genetics 55:387–398PubMedGoogle Scholar
  21. Drake JW, Ripley LS (1994) Mutagenesis. In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington, DC, pp 98–124Google Scholar
  22. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686 (see p. 1671)PubMedGoogle Scholar
  23. Drummond A, Pybus OG, Rambaut A (2003) Inference of viral evolutionary rates from molecular sequences. Adv Parasitol 54:331–358CrossRefPubMedGoogle Scholar
  24. Elango N, Kim S-H, NICS Program, Vigoda E, Yi SV (2008) Mutations of different molecular origins exhibit contrasting patterns of regional substitution rate variation. PLoS Comput Biol 4:e1000015. doi: 10.1371/journal.pcbi.1000015 CrossRefPubMedGoogle Scholar
  25. Evans D, Burbach J, van Leeuwen F (1995) Somatic mutations in the brain: relationship to aging? Mutat Res 338:173–182PubMedGoogle Scholar
  26. Fitch WM, Leiter JM, Li XQ, Palese P (1991) Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci USA 88:4270–4274CrossRefPubMedGoogle Scholar
  27. Fu YH, Kuhl DAP, Pizzuti A, Pieretti M, Sutcliffe J, Richards S, Verkerk A, Holden J, Fenwick R Jr, Warren ST, Oostra BA, Nelson DL, Caskey CT (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 67:1047–1058CrossRefPubMedGoogle Scholar
  28. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195CrossRefPubMedGoogle Scholar
  29. Ghosh S, Rosenbaum TF, Aeppll G, Coppersmith SN (2003) Entangled quantum states of magnetic dipoles. Nature 425:48–51CrossRefPubMedGoogle Scholar
  30. Gillispie JH (1991) The causes of molecular evolution. Oxford University Press, Oxford, UKGoogle Scholar
  31. Grace M, Brif C, Rabitz H, Walmsley IA, Kosut RL, Lidar DA (2007) Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. J Phys B At Mol Opt Phys 40:S103–S125CrossRefGoogle Scholar
  32. Hwang DG, Green P (2004) Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad Sci USA 101:13994–14001CrossRefPubMedGoogle Scholar
  33. Kadenbach B, Munscher C, Frank V, Muller-Hocker J, Napiwotzki J (1995) Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res 338:161–172PubMedGoogle Scholar
  34. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UKGoogle Scholar
  35. Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, Hahn BH, Wolinsky S, Bhattacharya T (2000) Timing the ancestor of the HIV-1 pandemic strains. Science 288:1789–1796CrossRefPubMedGoogle Scholar
  36. Kricker M, Drake JW (1990) Heat mutagenesis in bacteriophage T4: another walk down the transversion pathway. J Bacteriol 172:3037–3039PubMedGoogle Scholar
  37. Löwdin PO (1965) Quantum genetics and the aperiodic solid: some aspects on the biological problems of heredity, mutations, aging and tumors in view of the quantum theory of the DNA molecule. Adv Quantum Chem 2:213–359CrossRefGoogle Scholar
  38. Matsuura T, Fang P, Pearson CE, Jayakar P, Ashizawa T, Roa BB, Nelson DL (2006) Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity as a disease modifier. Am J Hum Genet 78:125–129CrossRefPubMedGoogle Scholar
  39. McFadden J, Al-Khalili J (1999) A quantum mechanical model of adaptive mutations. Biosystems 50:203–211CrossRefPubMedGoogle Scholar
  40. Merzbacher E (1997) Quantum mechanics, 3rd edn. Wiley, New YorkGoogle Scholar
  41. Metzler R, Ambjörnsson T (2005) Dynamic approach to DNA breathing. J Biol Phys 31:339–350CrossRefGoogle Scholar
  42. Modrich P (1997) Strand-specific mismatch repair in mammalian cells. J Biol Chem 272:24727–24730CrossRefPubMedGoogle Scholar
  43. Nei M, Glazko GV (2002) Estimation of divergence times for a few mammalian and several primate species. J Hered 93:157–164CrossRefPubMedGoogle Scholar
  44. Nielson MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge, UKGoogle Scholar
  45. Ohta T (2002) Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci USA 99:16134–16137CrossRefPubMedGoogle Scholar
  46. Ono T, Miyamura Y, Ikehata H (1995) Spontaneous mutant frequency of lacZ gene in spleen of transgenic mouse increases with age. Mutat Res 338:183–188PubMedGoogle Scholar
  47. Pollard E, Lemke M (1965) Rate of mutation to phage resistance in 2H2O medium. Mutat Res 2:213–217PubMedGoogle Scholar
  48. Reif F (1965) Fundamentals of statistical and thermal physics. McGraw Hill, New YorkGoogle Scholar
  49. Ripley LS (1988) Estimation of in vivo miscoding rates. Quantitative behavior of two classes of heat-induced DNA lesions. J Mol Biol 202:17–34CrossRefPubMedGoogle Scholar
  50. Smith AB, Peterson KJ (2002) Dating the time of origin of major clades: molecular clocks and the fossil record. Annu Rev Earth Planet Sci 30:65–88CrossRefGoogle Scholar
  51. Sueoka N (2002) Wide intra-genomic G + C heterogeneity in human and chicken is mainly due to strand-symmetric directional mutation pressures: dGTP-oxidation and symmetric cytosine-deamination hypothesis. Gene 30:141–154CrossRefGoogle Scholar
  52. Topal MD, Fresco JR (1976) Complementary base pairing and the origin of base substitutions. Nature 263:285–289CrossRefPubMedGoogle Scholar
  53. Twiddy SS, Holmes EC, Rambuat A (2003) Inferring the rate and time-scale of dengue virus evolution. Mol Biol Evol 20:122–129CrossRefPubMedGoogle Scholar
  54. Vedral V (2003) Entanglements hit the big time. Nature 425:28–29CrossRefPubMedGoogle Scholar
  55. Zhang XB, Urlando C, Tao KS, Heddle JA (1995) Factors affecting somatic mutation frequencies in vivo. Mutat Res 338:189–201PubMedGoogle Scholar
  56. Zurek WH (1991) Decoherence and the transition from quantum to classical. Phys Today 44:36–44CrossRefGoogle Scholar
  57. Zurek WH (2003) Decoherence, einselection and the quantum origins of the classical. Rev Mod Phys 75:715–775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.International Physics Health and Energy, Inc.LubbockUSA

Personalised recommendations