Biochemical Genetics

, 47:817 | Cite as

Organization of a β and α Globin Gene Set in the Teleost Atlantic Cod, Gadus morhua

Article

Abstract

Developmental globin gene expression and gene switching in vertebrates have been extensively studied. Globin gene regions have been characterized in some fish species and show linked α and β loci. Understanding coordinated expression between α and β globin genes in fish is of importance for further insights into globin gene regulation in teleosts and higher vertebrates. We characterize linked β and α globin genes in Atlantic cod, pulled from the Atlantic cod genome with a PCR research strategy, by screening a genomic λ library and primer walking. The genes are oriented tail-to-head (5′–3′), differing from the head-to-head orientation in transcriptional polarity characteristic of teleostean globin genes. Four tandem repeats are found in an intergenic region of 1500 base pairs. One microsatellite, which consists primarily of atg tandem repeats, has an open reading frame. The globin genes and open reading frame have a CCAAT promoter element and TATA boxes. The promoters of the open reading frame and the β gene share an 89-bp block (with 100% identity) that probably regulates transcription.

Keywords

Hemoglobin β/α globin genes Regulatory elements Atlantic cod Gadus morhua 

Notes

Acknowledgments

We thank Prof. Lars Pilström, Uppsala University, for giving us copies of a λ genomic library, and Prof. Jarle Mork at NTNU in Trondheim for tissue samples of genotyped individuals. The study was supported by a grant from the Icelandic Research Fund. We thank Dr. Petur Henry Petersen, and an anonymous reviewer for critical and helpful comments on the manuscript.

Supplementary material

10528_2009_9280_MOESM1_ESM.pdf (105 kb)
PDF 105 kb

References

  1. Agarwall S, Arya V, Stolle C, Pradhan M (2006) A novel Indian β-thalassemia mutation in the CACCC box of the promoter region. Eur J Heamat 77:530–532CrossRefGoogle Scholar
  2. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Árnason E (2004) Mitochondrial cytochrome b DNA variation in the high fecundity Atlantic cod: Trans-atlantic clines and shallow gene-genealogy. Genetics 166:1871–1885CrossRefPubMedGoogle Scholar
  4. Ashe H, Monks J, Wijgerde M, Fraser P, Proudfoot N (1997) Intergenic transcription and transinduction of the human β-globin locus. Genes Dev 249:4–2509Google Scholar
  5. Berenbrink M, Koldkjær P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757CrossRefPubMedGoogle Scholar
  6. Brownlie A, Hersey C, Oates AC, Paw BH, Falick AM, Witkowska HE, Flint J, Higgs D, Jessen J, Bahary N, Zhu H, Lin S, Zon L (2003) Characterization of embryonic globin genes of the zebrafish. Dev Biol 255:48–61CrossRefPubMedGoogle Scholar
  7. Bulger M, Doorninck J, Saitoh N, Telling A, Farrell C, Bender M, Felsenfeld G, Axel R, Groudine M (1999) Conservation of sequence and structure flanking the mouse and human β-globin loci: The β-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci USA 96:5129–5134CrossRefPubMedGoogle Scholar
  8. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94CrossRefPubMedGoogle Scholar
  9. Chan F, Robinson J, Brownlie A, Shivdasani RA, Donovan A, Brugnara C, Kim J, Lau B, Witkowska HE, Zon LI (1997) Characterization of adult α- and β-globin genes in the zebrafish. Blood 89:688–700PubMedGoogle Scholar
  10. Cohen R, Sheffery M, Kim C (1986) Partial purification of a nuclear protein that binds to the CCAAT box of the mouse alpha 1-globin gene. Mol Cell Biol 6:821–832PubMedGoogle Scholar
  11. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution and pathology. The Benjamin/Cummings Publishing Company, Inc, Menlo Park, CaliforniaGoogle Scholar
  12. Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194PubMedGoogle Scholar
  13. Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using phred. I. accuracy assessment. Genome Res 8:175–185PubMedGoogle Scholar
  14. Fang X, Han H, Stamatoyannopoulos G, Li Q (2004) Developmentally specific role of the CCAAT box in regulation of human γ-globin gene expression. J Biol Chem 279(7):5444–5449CrossRefPubMedGoogle Scholar
  15. Feng Y, Warin R, Li T, Olivier E, Besse A, Lobell A, Fu H, Lin C, Aladjem M, Bouhassira E (2005) The human β-globin locus control region can silence as well as activate gene expression. Mol Cell Biol 25:3864–3874CrossRefPubMedGoogle Scholar
  16. Filipe A, Li Q, Deveaux S, Godin I, Roméo P, Stamatoyannopoulos G, Mignotte V (1999) Regulation of embryonic/fetal globin genes by nuclear hormone receptors: a novel perspective on hemoglobin switching. EMBO J 18:687–697CrossRefPubMedGoogle Scholar
  17. Gillemans N, McMorrow T, Tewari R, Wai A, Burgtorf C, Drabek D, Ventress N, Langeveld A, Higgs D, Tan-Un K, Grosveld F, Philipsen S (2003) Functional and comparative analysis of globin loci in pufferfish and humans. Blood 101(7):2842–2849Google Scholar
  18. Gish W, States D (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272CrossRefPubMedGoogle Scholar
  19. Gordon D, Abajian C, Green P (1998) Consed: A graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  20. Hardison R (1998) Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol 201:1099–1117PubMedGoogle Scholar
  21. Harju S, Navas P, Stamatoyannopoulos G, KR P (2005) Genome architecture of the human β-globin locus affects developmental regulation of gene expression. Mol Cell Biol 25:8765–8778CrossRefPubMedGoogle Scholar
  22. Hoegg S, Brinkmann H, Taylor J, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203CrossRefPubMedGoogle Scholar
  23. Hosbach H, Wyler T, Weber R (1983) The Xenopus laevis globin gene family: Chromosomal arrangement and gene structure. Cell 32:45–53CrossRefPubMedGoogle Scholar
  24. Ji X, Liu D, Xu D, Li L, Wang J, Liang C (2000) Both locus control region and proximal regulatory elements direct the developmental regulation of β-globin gene cluster. J Cell Biochem 76:376–385CrossRefPubMedGoogle Scholar
  25. Johnson R, Prychitko T, Gumucio D, Wildman D, Uddin M, Goodman M (2005) Phylogenetic comparisons suggest that distance from the locus control region guides developmental expression of primate β-type globin genes. Proc Natl Acad Sci USA 103:3186–3191CrossRefGoogle Scholar
  26. Karlsson S, Nienhuis A (1985) Developmental regulation of human globin genes. Annu Rev Biochem 54:1071–1108CrossRefPubMedGoogle Scholar
  27. Li Y, Korol A, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007CrossRefPubMedGoogle Scholar
  28. Lynch M, Force A (2000) The probability of duplicate-gene preservation by subfunctionalization. Genetics 154:459–473PubMedGoogle Scholar
  29. Maruyama K, Yasumasu S, Naruse K, Mitani H, Shima A, Iuchi I (2004) Genomic organization and developmental expression of globin genes in the teleost Oryzias latipes. Gene 335:89–100CrossRefPubMedGoogle Scholar
  30. Maruyama K, Ishikawa Y, Yasumasu S, Iuchi I (2007) Globin gene enhancer activity of a dnase-i hypersensitivesite-40 homolog in medaka, Oryzias latipes. Zool Sci 24:997–1004CrossRefPubMedGoogle Scholar
  31. Omori A, Tanabe O, Engel J, Fukamizu A, Tanimoto K (2005) Adult stage γ-globin silencing is mediated by a promoter direct repeat element. Mol Cell Biol 25:3443–3451CrossRefPubMedGoogle Scholar
  32. Paradis E, Strimmer K, Claude J, Jobb G, Opgen-Rhein R, Dutheil J, Noel Y, Bolker B (2005) Ape: analyses of phylogenetics and evolution R package version 1.6Google Scholar
  33. R Development Core Team (2006) R: a language and environment for statistical computing R foundation for statistical computing Vienna, Austria ISBN 3-900051-07-0Google Scholar
  34. Rice P, Longden I, Bleasby A (2000) Emboss: The European molecular biology open software suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  35. Robinson-Rechavi M, Marchand O, Escriva H, Bardet P, Zelus D, Hughes S, Laudet V (2001) Euteleost fish genomes are characterized by expansion of gene families. Genome Res 11:781–788CrossRefPubMedGoogle Scholar
  36. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, NYGoogle Scholar
  37. Sandelin A, Bailey P, Bruce S, Engstrom P, Klos J, Wasserman W, Ericson J, Lenhard B (2004) Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes BMC. Genomics 5:99CrossRefPubMedGoogle Scholar
  38. Shen W, Liu D, Liang C (2002) The regulatory network controlling β-globin gene switching. Mol Biol Rep 28:175–183CrossRefGoogle Scholar
  39. Shimeld S (1999) Gene function, gene networks and the fate of duplicated genes. Cell Devel Biol 10:549–553CrossRefGoogle Scholar
  40. Sick K (1965) Hemoglobin polymorphisms of cod in the Baltic and the Danish Belt sea. Hereditas 54:19–48CrossRefPubMedGoogle Scholar
  41. Sjakste N, Sjakste T (2002) Structure of globin gene domains in mammals and birds. Russ J Genet 38:1343–1358CrossRefGoogle Scholar
  42. Wagner A, Deryckere F, McMorrow T, Gannon F (1994) Tail-to-tail orientation of the Atlantic salmon alpha- and beta-globin genes. J Mol Evol 38:28–35CrossRefPubMedGoogle Scholar
  43. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513PubMedGoogle Scholar
  44. Woolfe A, Goodson M, Goode D, Snell P, McEwen G, Vavouri T, Smith S, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards Y, Cooke J, Elgar G (2005) Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol 3:116–130CrossRefGoogle Scholar
  45. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–299CrossRefGoogle Scholar
  46. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of IcelandReykjavíkIceland

Personalised recommendations