Advertisement

Biochemical Genetics

, 45:305 | Cite as

Mitochondrial CR-1 Variation in Sardinian Hares and Its Relationships with Other Old World Hares (Genus Lepus)

  • Massimo Scandura
  • Laura Iacolina
  • Hichem Ben Slimen
  • Franz Suchentrunk
  • Marco Apollonio
Article

 

Among the European fauna, the Sardinian hare (Lepus sp.) is peculiar in that it differs from all other hares inhabiting the continent. Here, we report on the variation of a 461 bp sequence of hypervariable domain 1 of the mitochondrial control region, examined in 42 hares collected throughout Sardinia and compared to the corresponding sequences of different Lepus taxa. Seventeen novel haplotypes were found in the Sardinian population, resulting in a haplotype diversity of 0.840 and a nucleotide diversity of 0.012. As a result of Bayesian and principal coordinates analyses, Sardinian hares were grouped with North African hares, constituting a monophyletic clade that diverges from all other Old World hares, including Cape hares from South Africa and East Asia. Hence, our data agree that populations inhabiting North Africa and Sardinia form a distinct taxon, which could possibly be included in the L. capensis superspecies. Moreover, two corresponding lineages can be found in Sardinia and Tunisia, providing evidence of a common origin of the two populations and thus supporting the hypothesis that North African hares were introduced into the island in historical times. Our data show that the two lineages differ in their geographic distribution throughout the island and that the wild Sardinian population also shows the signature of a postintroduction demographic expansion.

KEY WORDS

Sardinian hare mtDNA Lepus capensis phylogeography population structure 

Notes

ACKNOWLEDGMENTS

This research was supported by a grant of the Sardinian Regional Government, Ministry of Environment. We thank R. Foddai for his help in laboratory analyses and Mr. G. Cau for allowing us to collect hare samples from the breeding station of Las Plassas. We are also indebted to S. Luchetti, S. Contu, S. Luccarini, A. Pintore, A. Pipia, M. F. Di Benedetto, M. Fois, M. Masala, M. Derudas, and several local hunters for their help in collecting samples throughout Sardinia. We are finally grateful to B. Wilkens, who provided us with zooarchaeological information, and to the journal editor and to an anonymous reviewer for their constructive comments.

REFERENCES

  1. Alves, P. C., Ferrand, N., Suchentrunk, F., and Harris, D. J. (2003). Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. Mol. Phylogen. Evol. 27:70–80.CrossRefGoogle Scholar
  2. Anderson, M. J. (2003). PCO, a Fortran Computer Program for Principal Coordinate Analysis, Department of Statistics, University of Auckland, New Zealand.Google Scholar
  3. Aris-Brosou, S., and Excoffier, L. (1996). The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol. 13:494–504.PubMedGoogle Scholar
  4. Arnason, U., Adegoke, J. A., Bodin, K., Born, E. W., Esa, Y. B., Gullberg, A., Nilsson, M., Short, R. V., Xu, X., and Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. U.S.A. 99:8151–8156.PubMedCrossRefGoogle Scholar
  5. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18:489–522.Google Scholar
  6. Avise, J. C., Walker, D. E., and Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. B 265:1707–1712.CrossRefGoogle Scholar
  7. Ben Slimen, H., Suchentrunk, F., Memmi, A., and Ben Ammar Elgaaied, A. (2005). Biochemical genetic relationships among Tunisian hares (Lepus sp.), South African Cape hares (L. capensis), and European brown hares (L. europaeus). Biochem. Genet. 43:577–596.PubMedCrossRefGoogle Scholar
  8. Ben Slimen, H., Suchentrunk, F., Memmi, A., Sert, H., Kryger, U., Alves, P. C., and Ben Ammar Elgaaied, A. (2006a). Evolutionary relationships among hares from North Africa (Lepus sp. or Lepus spp.), Cape hares (L. capensis) from South Africa, and brown hares (L. europaeus), as inferred from mtDNA PCR-RFLP and allozyme data. J. Zool. Syst. Evol. Res. 44:88–99.CrossRefGoogle Scholar
  9. Ben Slimen, H., Suchentrunk, F., Shahin, A. B., and Ben Ammar Elgaaied, A. (2006b). Phylogenetic analysis of mtCR-1 sequences of Tunisian and Egyptian hares (Lepus sp. or spp., Lagomorpha) with different coat colours. Mamm. Biol., in press (DOI: 10.1016/J.MAMBIO.2006.03.002).Google Scholar
  10. Caloi, L., Gliozzi, E., Kotsakis, T., Malatesta, A., and Palombo, M. R. (1986). Observations on the palaeobiogeography of Pleistocene mammals in Italy. Hystrix 1:7–23. [In Italian]Google Scholar
  11. Clement, M., Posada, D., and Crandall, K. A. (2000). TCS, a computer program to estimate gene genealogies. Mol. Ecol. 9:1657–1659.PubMedCrossRefGoogle Scholar
  12. Corbet, G. B. (1986). Relationships and origins of the European lagomorphs. Mamm. Rev. 16:105–110.Google Scholar
  13. Flux, J. E. C., and Angermann, R. (1990). The hares and jackrabbits. In Chapman, J. A., and Flux, J. E. C. (eds.), Rabbits, Hares and Picas: Status Survey and Conservation Action Plan, IUCN/SSC Lagomorph Specialist Group, Glaud, Seychelles.Google Scholar
  14. Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925.PubMedGoogle Scholar
  15. Ghigi, A. (1917). Mammals of Italy considered in their relationships with the agriculture. Riv. Sci. Nat.-Nat. 8:125–126. [In Italian]Google Scholar
  16. Goldstein, P. Z., DeSalle, R., Amato, G., and Vogler, A. P. (2000). Conservation genetics at the species boundary. Conserv. Biol. 14:120–131.CrossRefGoogle Scholar
  17. Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22:160–174.PubMedCrossRefGoogle Scholar
  18. Hoffmann, R. S. (1993). Order Lagomorpha. In Wilson, D. E., and Reeder, D. M. (eds.), Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd edn., Smithsonian Institution Press, Washington, pp. 807–827.Google Scholar
  19. Kasapidis, P., Suchentrunk, F., Magoulas, A., and Kotulas, G. (2005). The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations. Mol. Phylogen. Evol. 34:55–66.CrossRefGoogle Scholar
  20. Kryger, U., Robinson, T. J., and Bloomer, P. (2004). Population structure and history of southern African scrub hares, Lepus saxatilis. J. Zool. 263:121–123.CrossRefGoogle Scholar
  21. Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetic Analysis and sequence alignment. Brief. Bioinform. 5:150–163.PubMedCrossRefGoogle Scholar
  22. Luchetti, S., Sacchi, O., Meriggi, A., and Apollonio, M. (2005). Habitat requirements of Mediterranean hare (Lepus capensis mediterraneus) in protected areas of Sardinia. In Proceedings of the 27th Congress of the International Union of Game Biologist (IUGB), Hannover, Germany, August 28–September 3.Google Scholar
  23. Melo-Ferreira, J., Boursot, P., Suchentrunk, F., Ferrand, N., and Alves, P. C. (2005). Invasion from the cold past: Extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol. Ecol. 14:2459–2464.PubMedCrossRefGoogle Scholar
  24. Meyer, S., Weiss, G., and von Häseler, A. (1999). Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110.PubMedGoogle Scholar
  25. Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P. J. H., Spitzenberger, F., Stubbe, M., Thissen, J. B. M., Vohralik, V., and Zima, J. (1999). The Atlas of European Mammals, Academic, London.Google Scholar
  26. Nei, M., and Kumar, S. (2000). Molecular Evolution and Phylogenetics, Oxford University Press, New York.Google Scholar
  27. Palacios, F. (1998). Diversity of hares in Europe. In Reig, S. (ed.), Euro-American Mammal Congress, Abstracts, Universidad de Santiago de Compostela, Spain, July 19–24, p. 85.Google Scholar
  28. Petter, F. (1959). Eléments d’une révision des lièvres africains du sous-genre Lepus. Mammalia 23:41–67.CrossRefGoogle Scholar
  29. Petter, F. (1961). Eléments d’une révision des lièvres européens et asiatique du sous-genre Lepus. Z. Säugetierkunde 26:30–40.Google Scholar
  30. Pierpaoli, M., Riga, F., Trocchi, V., and Randi, E. (1999). Species extinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol. Ecol. 8:1805–1817.PubMedCrossRefGoogle Scholar
  31. Posada, D., and Crandall, K. A. (1998). ModelTest: Testing the model of DNA substitution. Bioinformatics 14:817–818.PubMedCrossRefGoogle Scholar
  32. Rogers, A. R., and Harpending, H. C. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9:552–569.PubMedGoogle Scholar
  33. Ronquist, F., and Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.PubMedCrossRefGoogle Scholar
  34. Rozas, J., Sànchez-Del Barrio, J. C., Messeguer, X., and Rozas, R. (2003). DNASP: DNA polymorphism analyses by coalescent and other methods. Bioinformatics 19:2496–2497.PubMedCrossRefGoogle Scholar
  35. Spagnesi, M. (2002). Lepre sarda. In Spagnesi, M., and De Marinis, A. M. (eds.), Mammiferi d’Italia. Quaderni Conservazione della Natura, vol. 14, Min. Ambiente-1st. Naz. Fauna Selvatica, pp. 152–153. [In Italian]Google Scholar
  36. Suchentrunk, F., Ben Slimen, H., and Sert, H. (2006a). On nuclear gene pools and mtDNA characteristics of South African Cape hares (Lepus capensis), scrub hares (L. saxatilis) and European brown hares (L. europaeus): Phylogenetic implications. In Alves, P. C., Ferrand, N., and Hackländer, K. (eds.), Lagomorph Biology: Evolution, Ecology, and Conservation, Springer-Verlag, Heidelberg, Germany.Google Scholar
  37. Suchentrunk, F., Ben Slimen, H., Stamatis, C., Sert, H., Scandura, M., Apollonio, M., and Mamuris Z. (2006b). Molecular approaches revealing prehistoric, historic, or recent translocations and introductions of hares (genus Lepus) by humans. Hum. Evol. 21:151–165.Google Scholar
  38. Suchentrunk, F., Jaschke, C., and Haiden, A. (2001). Little allozyme and mtDNA variability in brown hares (Lepus europaeus) from New Zealand and Britain: A legacy of bottlenecks? Mamm. Biol. 66:48–59.Google Scholar
  39. Suchentrunk, F., Mamuris, Z., Stamatis, C., Ben Slimen, H., Hacklander, K., Härer, G., and Giacometti, M. (2004). Bilateral introgressive hybridization in wild living mountain hares (L. timidus varronis) and brown hares (L. europaeus) from Switzerland. 2nd World Lagomorph Conference, July 26–31, Vairão, Portugal, p. 26.Google Scholar
  40. Swofford, D. L. (2000). PAUP * : Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0 beta, Sinauer Associates, Sunderland, MA.Google Scholar
  41. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595.PubMedGoogle Scholar
  42. Tajima, F. (1996). The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143:1457–1465.PubMedGoogle Scholar
  43. Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data, 3: Cladogram estimation. Genetics 132:619–633.PubMedGoogle Scholar
  44. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). Clustal W, improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.PubMedCrossRefGoogle Scholar
  45. Thulin, C. G., Jaarola, M., and Tegelström, H. (1997). The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol. Ecol. 6:463–467.PubMedCrossRefGoogle Scholar
  46. Thulin, C. G., and Tegelström, H. (2002). Biased geographical distribution of mitochondrial DNA that passed the species barrier from mountain hares to brown hares (genus Lepus): An effect of genetic incompatibility and mating behaviour? J. Zool. 258:299–306.CrossRefGoogle Scholar
  47. Trocchi, V., Riga, F., and Randi, E. (2003). Lepus (“capensis”) mediterraneus Wagner, 1841: Sardischer Hase. In Niethammer, J., and Krapp, F. (eds.), Handbuch der Säugetiere Europas: Lagomorpha, Vol. 3, AULA-Verlag, Wiesbaden, Germany, pp. 105–116.Google Scholar
  48. Vigne, J. D. (1992). Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mamm. Rev. 22:87–89.Google Scholar
  49. Waltari, E., Demboski, J. R., Klein, D. R., and Cook, J. A. (2004). A molecular perspective on the historical biogeography of the northern high latitudes. J. Mamm. 85:591–600.CrossRefGoogle Scholar
  50. Wilkens, B. (2003). Sardinia, Corsica et Baleares Antiquae. Int. J. Archaeol. 1:181–197.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Massimo Scandura
    • 1
  • Laura Iacolina
    • 1
  • Hichem Ben Slimen
    • 2
  • Franz Suchentrunk
    • 3
  • Marco Apollonio
    • 1
  1. 1.Department of Zoology and Evolutionary GeneticsUniversity of SassariSassariItaly
  2. 2.Laboratoire de Génétique Moléculaire, Immunologie et BiotechnologieFaculté des Sciences de TunisTunisTunisia
  3. 3.Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria

Personalised recommendations