Advertisement

Biochemical Genetics

, Volume 45, Issue 3–4, pp 195–209 | Cite as

Genetic Structure and Differentiation of Three Chinese Indigenous Cattle Populations

  • Yongjiang Mao
  • Hong ChangEmail author
  • Zhangping Yang
  • Liu Zhang
  • Ming Xu
  • Wei Sun
  • Guobin Chang
  • Guangming Song
Original Paper

Levels of genetic differentiation, gene flow, and genetic structure of three indigenous cattle populations (Luxi, Bohai, and Minnan) and two reference cattle populations (Chinese Holstein and Qinhai yak) in China were estimated using the information from 12 microsatellites, and 141 microsatellite alleles were identified. The mean number of alleles per locus ranged from 2.9005 in yak to 4.9722 in Holstein. The observed heterozygosity ranged from 0.5325 (yak) to 0.7719 (Holstein); 29 private alleles were detected. The global heterozygote deficit across all populations amounted to 58.5% (p < 0.001). The overall significant (p < 0.001) deficit of heterozygotes because of inbreeding within breeds amounted to 43.2%. The five cattle populations were highly differentiated (F st = 26.9%, p < 0.001) at all loci. The heterozygote deficit within the population was highest in Luxi cattle and lowest in yak. The average number of effective migrants exchanged per generation was highest (1.149) between Luxi and Holstein, and lowest (0.509) between Luxi and yak. With the application of prior population information, cluster analysis achieved posterior probabilities from 91% to 98% of correctly assigning individuals to populations. Combining the information of cluster analysis, gene flow, and Structure analysis, the five cattle populations belong to three genetic clusters, a taurine (Luxi and Chinese Holstein), a zebu (Bohai and Minnan), and a yak cluster. This indicates that Bohai black is closer to Bos indicus than Luxi cattle. The evolution and development of three indigenous cattle populations are discussed.

KEY WORDS:

Genetic structure genetic differentiation Chinese indigenous cattle microsatellite 

Notes

ACKNOWLEDGMENTS

This work was funded by the National High Technology 863 Project of China (No. 2002AA242011), Chinese National Natural Science Foundation (No. 30571323), and China Scholarship Council. The authors wish to thank the following organizations for help with sample collection: Luxi Breeding Farm, Lianshan Animal Production Co., Bohai Black Breeding Farm, Shandong Province, Animal Production and Veterinary Medicine Station of Fujian Province, Animal Production Bureau of Qinhai, Institute of Animal Science and Veterinary Medicine, Qinhai Province, Experimental Farm of Yangzhou University, Yangzhou City, Jiangsu Province.

REFERENCES

  1. Cavalli-Sforza, L. L., and Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. Am. J. Hum. Genet. 19:233.PubMedGoogle Scholar
  2. Chang, H., Geng, S. M., Wu, B., and Chen, Y. C. (1990). A study on the origin of Chinese yellow cattle: First part of the historical. In: Characteristics of Chinese Yellow Cattle Ecospecies and Their Course of Utilization, Agricultural Press, Beijing, p. 205.Google Scholar
  3. Chen, Y. C., Wang, Y. Y., Chang, H., Cao, H. H., Pang, Z. H., and Zhang, Y. (1990). The classification of Chinese yellow cattle. In: Characteristics of Chinese Yellow Cattle Ecospecies and Their Course of Utilization, Agricultural Publishing Press, Beijing, p. 3.Google Scholar
  4. Davies, N., Villablanca, F. X., and Roderick, G. K. (1999). Determining the source of individuals: Multilocus genotyping in nonequilibrium population genetics. Trend. Ecol. Evol. 14:17.CrossRefGoogle Scholar
  5. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783.CrossRefGoogle Scholar
  6. Francis, C. Y., Yang, R. C., and Tim, B. (2000). PopGene (1.32). http://www.ualberta.ca/∼fyeh/download.htm.Google Scholar
  7. Goldstein, D. B., Ruiz-Linares, A., Feldmann, M., and Cavalli-Sforza, L. L. (1995). Genetic absolute dating based on microsatellite and origin of modern humans. Proc. Natl. Acad. Sci. U.S.A 96:6722.Google Scholar
  8. Goudet, J. (2002). FSTAT: A program to estimate and test gene diversities and fixation indices. Version 2.9.3.2. http://www2.unil.ch/popgen/softwares/fstat.htm.Google Scholar
  9. Ibeagha-Awemu, E. M., and Erhardt, G. (2005). Genetic structure and differentiation of 12 African Bos indicus and Bos taurus cattle breeds inferred from protein and microsatellite polymorphisms. J. Anim. Breed. Genet. 122:12.PubMedCrossRefGoogle Scholar
  10. Jordana, J., Alexandrino, P., Beja-Pereira, A., Bessa, I., Canon, J., Carretero, Y., Dunner, S., Laloe, D., Moazami-Goudarzi, K., Sanchez, A., and Ferrand, N. (2003). Genetic structure of 18 local south European beef cattle breeds by comparative F-statistics analysis. J. Anim. Breed. Genet. 120:73.CrossRefGoogle Scholar
  11. Kantanen, J., Olsaker, I., Holm, L. E., Lien, S., Vilkki, J., Brusgaard, K., Eythorsdotir, E., and Danell, B. (2000). Genetic diversity and population structure of 20 north European cattle breeds. J. Hered. 91:446.PubMedCrossRefGoogle Scholar
  12. Kim, K. S., Yeo, J. S., and Choi, C. B. (2002). Genetic diversity of northeast Asian cattle based on microsatellite data. Anim. Genet. 33:201.PubMedCrossRefGoogle Scholar
  13. Lei, C. Z., Chen, H., Yang, G. S., Song, L. S., Lei, X. Q., Sun, W. B., Li, R. B., and Liu, X. L. (2004). Study on mitochondrial DNA genetic diversity of some cattle breeds in China. Acta Genetica Sinica 31:57.PubMedGoogle Scholar
  14. Li, M. H., Stembauer, K., Haahr, P. T., and Kantanen, J. (2005). Genetic components in contemporary Faroe Islands cattle as revealed by microsatellite analysis. J. Anim. Breed. Genet. 122:309.PubMedCrossRefGoogle Scholar
  15. Ma, Y. H., Xu, G. F., Wang, D. Y., and Liu, H. L. (2002). Study on dynamic information of animal genetic resources in China. Scientia Agricultura Sinica 35:552.Google Scholar
  16. MacHugh, D. E., Loftus, R. T., Cunningham, P., and Bradley, D. G. (1998). Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Anim. Genet. 29:333.PubMedCrossRefGoogle Scholar
  17. Manel, S., Berthier, P., and Luikart, G. (2002). Detecting wildlife poaching: Identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conserv. Biol. 16:650.CrossRefGoogle Scholar
  18. Martin-Burriel, I., Garcia-Muro, E., and Zaragoaz, P. (1999). Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim. Genet. 30:177.PubMedCrossRefGoogle Scholar
  19. Mateus, J. C., Penedo, M. C. T., Alves, V. C., Ramos, M., and Rangel-Figueiredo, T. (2003). Genetic diversity and differentiation in Portuguese cattle breeds using microsatellite. Anim. Genet. 35:106.CrossRefGoogle Scholar
  20. Olivier, L. (2002). Populations 1.2.28. http://www.cnrs-gif.fr/pge/bioinfo/populations.Google Scholar
  21. Page, R. D. M. (1996). Treeview: An application to display phylogenetic trees on personal computer. Compo Appl. Biosci. 12:357.Google Scholar
  22. Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155:945.PubMedGoogle Scholar
  23. Qie, X. B., Han, J. L., Lkhagva, B., Chekarova, I., Badamdorj, D., Rege, J. E. O., and Hanotte, O. (2005). Genetic diversity and differentiation of Mongolian and Russian yak populations. J. Anim. Breed. Genet. 122:117.CrossRefGoogle Scholar
  24. Rannala, B., and Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA 94:9197.PubMedCrossRefGoogle Scholar
  25. Raymond, M., and Rousset, F. (2001). Genepop 3.3. Population genetics software for exact tests and ecumenicism. http://Wbiomed.curtin.edu.au/genepop.Google Scholar
  26. Ritz, L. R., Glowatzki, M. L., MacHugh, D. E., and Gaillard, C. (2000). Phylogenetic analysis of the tribe Bovini using microsatellite. Anim. Genet. 31:178.PubMedCrossRefGoogle Scholar
  27. Saitou, N., and Nei, M. (1987). The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Bio. Evol. 4:406.Google Scholar
  28. Sambrook, J., Fritch, E. F., and Maniatis, T. (1989). Molecular Clone: A Laboratory Manual. 2nd ed. Cold Spring Harbor Press. New York.Google Scholar
  29. Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium population. Evolution 47:262.CrossRefGoogle Scholar
  30. Wang, M. Q., Weigend, S., Barre-Drie, A., Carnwath, J. W., Lu, Z. L., and Niemann, H. (2003). Analysis of two Chinese yak (Bos grunniens) populations using bovine microsatellite primers. J. Anim. Breed. Genet. 120:237.CrossRefGoogle Scholar
  31. Weir, B. S., and Cockerham, C. C. (1984). Estimation of F-statistics for the analysis of population structure. Evolution 38:1358.CrossRefGoogle Scholar
  32. Wiener, G., Han, J. L., and Long, R. (2003). The Yak, 2nd ed. Regional Office for Asia and the Pacific, Food and Agriculture Organization of the United Nations, Bangkok, Thailand, p. 1.Google Scholar
  33. Wright, S. (1978). Evolution and the Genetics of Populations, 4: Variability Within and Among Natural Populations, University of Chicago Press, Chicago.Google Scholar
  34. Yu, R. L. (1990). The Y chromosome polymorphism of yellow cattle in China and breed grouping. In: Characteristics of Chinese Yellow Cattle Ecospecies and Their Course of Utilization. Agricultural Press, Beijing, p. 119.Google Scholar
  35. Zhou, G. L., Jin, H. G., Zhu, Q., Guo, S. L., and Wu, H. (2005). Genetic diversity analysis of five cattle breeds native to China using microsatellite. J Genet. 84:77.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yongjiang Mao
    • 1
  • Hong Chang
    • 1
    Email author
  • Zhangping Yang
    • 1
  • Liu Zhang
    • 1
  • Ming Xu
    • 1
  • Wei Sun
    • 1
  • Guobin Chang
    • 1
  • Guangming Song
    • 1
  1. 1.Animal Science and Technology CollegeYangzhou UniversityYangzhouP.R. China

Personalised recommendations