Biochemical Genetics

, 44:444 | Cite as

Genetic Diversity and Population Structure of Yellow Camellia (Camellia nitidissima) in China as Revealed by RAPD and AFLP Markers

  • Shaoqing TangEmail author
  • Xiaoyun Bin
  • Li Wang
  • Yang Zhong


Camellia nitidissima, a rare plant but a useful genetic resource for commercial cultivation of ornamental camellias, is distributed in a narrow region of South China and North Vietnam. In this study, RAPD and AFLP markers were used to assess the genetic diversity and population structure of six natural populations of C. nitidissima from Guangxi in South China. Twenty RAPD primers amplified 183 bands, of which 143 bands were polymorphic, and 8 AFLP primer pairs produced 502 bands, of which 364 were polymorphic. Independent as well as combined analyses of the cluster analyses of the RAPD and AFLP fragments showed that the six populations could be classified into two major genetic groups corresponding to the Nanning and Fangcheng areas. The Mantel test revealed significant correlation between the genetic and geographic distances of C. nitidissima populations (r = 0.953, p = 0.036). AMOVA analysis allowed the partitioning of the genetic variation between groups (36.09%), among populations within groups (25.78%), and within populations (38.14%). An understanding of both the genetic diversity and the population structure of C. nitidissima in China can also provide insight into the conservation and management of this endangered species.


genetic diversity population structure RAPD AFLP Camellia nitidissima China 



We would like to thank Jimei Liu and Wenjuan Zhang for technical assistance. This work was supported by grants from the Chinese National Natural Science Foundation (30260013), the program for NCET in university and Chinese National Key Project for Basic Research (973) (2002CB512801).


  1. Cao, G. X., Zhong, Z. C., Xie, D. T., Liu, Y., and Long, Y. (2003). RAPD analysis of Camellia rosthorniana populations in different communities in Jinyun Mountain. Acta Ecol. Sin. 23:1583–1589.Google Scholar
  2. Chang, H. T., and Ren, S. X. (1998). Flora Reipublicae Popularis Sinicae, vol. 49, 3rd edn., Science Press, Beijing, China, pp. 101–112.Google Scholar
  3. Chung, M. G., and Chung M. Y. (2001). Levels and partitioning of genetic diversity of Camellia japonica (Theaceae) in Korea and Japon. Silvae Genet. 49:119-124.Google Scholar
  4. Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.Google Scholar
  5. Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction sites. Genetics 131:474–479.Google Scholar
  6. Fu, L. G. (1992). China Plant Red Data Book, Science Press, Beijing, China, pp. 648–649.Google Scholar
  7. Godt, M. J. W., and Hamrick, J. L. (1993). Genetic diversity and population structure in Tradescantia hirsuticaulis (Commelinaceae). Am. J. Bot. 80:959–966.CrossRefGoogle Scholar
  8. Hamrick, J. L., Godt, M. J. W., Murawski, D. A., and Loveless, M. D. (1991). Correlations between species traits and allozyme diversity: Implications for conservation biology. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, pp. 75–86.Google Scholar
  9. Holsinger, K. E., and Gottlieb, L. D. (1991). Conservation of rare and endangered plants: Principles and prospects. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, pp. 195–208.Google Scholar
  10. Huang, F. P. (2001). Study on the yellow camellias community in Fangcheng. Guangxi Forest. Sci. 30:35–38.Google Scholar
  11. Lewontin, R. C. (1972). The apportionment of human diversity. Evol. Biol. 6:381–398.Google Scholar
  12. Liang, S. Y. (1993). Yellow Camellias, Chinese Forestry Press, Beijing, China, pp. 1–21.Google Scholar
  13. Lynch, M., and Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3:91–99.PubMedGoogle Scholar
  14. Mantel, N. A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220.PubMedGoogle Scholar
  15. Mueller, U. G., and Wolfenbarer, L. L. (1999). AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14:389–394.PubMedCrossRefGoogle Scholar
  16. Nan, P., Shi, S., Peng, S., Tian, C., and Zhong, Y. (2003). Genetic diversity in Primula obconica from Central and South-west China as revealed by ISSR markers. Ann. Bot. 91:329–333.PubMedCrossRefGoogle Scholar
  17. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70:3321–3323.PubMedCrossRefGoogle Scholar
  18. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.PubMedGoogle Scholar
  19. Nishimoto, S. I., Hashimoto, F., Shimizu, K., and Sakata, Y. (2004). Petal coloration of interspecific hydrids between Camellia chysantha × C. japonica. Jpn. Soc. Hort. Sci. 73:189–191.CrossRefGoogle Scholar
  20. Nybom, H., and Bartish, I. V. (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspec. Plant Ecol. Evol. Syst. 3(2):93–114.CrossRefGoogle Scholar
  21. Parks, C. R. (2000). Breeding progress with yellow camellias. American Camellia Yearbook, pp. 9–10.Google Scholar
  22. Paul, S., Wchira, F. N., Powell, W., and Waugh, R. (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94:255–263.CrossRefGoogle Scholar
  23. Rohlf, F. J. (2000). NTSYSpc: Numerical taxonomy and multivariate analysis system, version 2.1, Exeter Software, Setauket, NY.Google Scholar
  24. Schneider, S., Roessli, D., and Excoffier, L. (2000). Arlequin version 2000: A software for population genetics data analysis. University of Geneva.Google Scholar
  25. Su, Z. M., and Mo, X. L. (1988). Geographic distribution of Camellia section Chrysantha from China. Guihaia 8:75–81.Google Scholar
  26. Tang, S., Shi, S., Chen, Y., Qu, L., and Zhang, H. (1998). Phylogenetic relationship of Camellia nitidissima Chi and its allied species based on random amplified polymorphic DNA. Acta Sci. Nat. Univ. Sunyatseni 37(4):28–32.Google Scholar
  27. Tang, T., Zhong, Y., Jian, S., and Shi, S. (2003). Genetic diversity of Hibiscus tiliaceus (Malvaceae) in China assessed using AFLP markers. Ann. Bot. 92:409–414.PubMedCrossRefGoogle Scholar
  28. Torres, E., Iriondo, J. M., and Perez, C. (2003). Genetic structure of an endangered plant, Antirrhinum microphyllum (Scrophulariaceae): Allozyme and RAPD analysis. Am. J. Bot. 90:85–92.Google Scholar
  29. Vos, P., Hogers, R., and Bleeder, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.PubMedGoogle Scholar
  30. Wendel, J. F., and Parks, C. R. (1985). Genetic diversity and population structure in Camellia japonica L. (Theaceae). Am. J. Bot. 72:52–65.CrossRefGoogle Scholar
  31. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6536.PubMedGoogle Scholar
  32. Wright, S. (1931). Evolution in Mendelian populations. Genetics 16:97–159.PubMedGoogle Scholar
  33. Wright, S. (1951). The genetical structure of populations. Ann. Engen. 15:323–354.Google Scholar
  34. Yeeh, Y., Kang, S. S., and Chung, M. G. (1996). Evaluations of the natural monument populations of Camellia japonica (Theaceae) in Korea based on allozyme studies. Bot. Bull. Acad. Sin. 37:141–146.Google Scholar
  35. Yeh, F. C., Yang, R., Boyle, T. J., Ye, Z., and Xiyan, J. M. (2000). PopGene32, Microsoft Windows-based freeware for population. Genetic analysis, version 1.32, Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.Google Scholar
  36. Zietkiewicz, E., Rafalski, A., and Labuda, D. (1994). Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics 20:176–183.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shaoqing Tang
    • 1
    Email author
  • Xiaoyun Bin
    • 1
    • 2
  • Li Wang
    • 3
    • 4
  • Yang Zhong
    • 3
    • 1
  1. 1.College of Life Sciences, Guangxi Normal UniversityGuilinP.R. China
  2. 2.Youjiang Medical College for NationalitiesBaiseP.R. China
  3. 3.Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringSchool of Life Sciences, Fudan UniversityShanghaiP.R. China
  4. 4.Shanghai Center for Bioinformation TechnologyShanghaiP.R. China

Personalised recommendations