Biochemical Genetics

, Volume 44, Issue 11–12, pp 483–493 | Cite as

Analysis of Genetic Diversity and Population Differentiation of Larix potaninii var. chinensis Using Microsatellite DNA

  • Xiao-Min Yu
  • Qing Zhou
  • Zeng-Qiang Qian
  • Shan Li
  • Gui-Fang Zhao
Article

Larix potaninii var. chinensis is endemic to China and is found only on several peaks of the Qinling Mountains in Shaanxi Province. In China, it is classified in the second class of national protected rare plants. To estimate genetic diversity and to analyze population genetic structure of L. potaninii var. chinensis, 120 individual samples from six natural populations were assessed using seven Larix SSR primer pairs. The results indicate that the level of genetic diversity of L. potaninii var. chinensis is very high, with a mean number of alleles per locus of 4.71. On the other hand, correspondingly low genetic differentiation was found between populations, with an FST value of 0.116, suggesting that more than four-fifths of the genetic variation resides within populations. Besides the influence of habitat heterogeneity and historical distribution, the high level of genetic diversity of L. potaninii var. chinensis is also attributed to its biological characteristics. The definite genetic differentiation among populations, however, is attributed to the effects of genetic drift and natural selection, which are most likely due to the spatial isolation and inclement climate of the species’ habitat. This study also revealed evidence that L. potaninii var. chinensis could be endangered, and some conservation strategies are suggested.

KEY WORDS

Larix potaninii var. chinensis SSR marker genetic diversity population differentiation 

REFERENCES

  1. Chen, C. G., and Peng, H. (1994). The phytocoenological features and classification of the forests of Larix chinensis in Qinling range. Scientia Silvae Sinicae 30(6):487–496.Google Scholar
  2. Creste, S., Tulmann Neto, A., and Figueira, A. (2001). Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol. Biol. Rep. 19:299–306.Google Scholar
  3. Delgado, P., Piñero, D., Chaos, A., Perez-Nasser, N., and Alvarez-Buylla, E. R. (1999). High population differentiation and genetic variation in the endangered Mexican pine, Pinus rzedowski (Pinaceae). Am. J. Bot. 86:669–676.PubMedCrossRefGoogle Scholar
  4. Dubreuil, P., and Charcosset, A. (1998). Genetic diversity within and among maize populations: A comparison between isozyme and nuclear RFLP loci. Theor. Appl. Genet. 96:577–587.CrossRefGoogle Scholar
  5. El-Kassaby, Y. A. (1991). Genetic variation within and among conifer populations: A review and evaluation of methods. In Fineschi, S., Malvolti, M. E., Cannata, F., and Hattemer, H. H. (eds.), Biochemical Markers in the Population Genetics of Forest Trees, SPB Academic Publishing, The Hague, pp. 61–76.Google Scholar
  6. Fins, L., and Seeb, L. W. (1986). Genetic variation in allozymes of western larch. Can. J. For. Res. 16:1013–1018.Google Scholar
  7. Flora of China Editorial Committee (1999). Flora of China 4:33–37.Google Scholar
  8. Gibson, J. P., and Hamrick, J. L. (1991). Genetic diversity and structure in Pinus pungens (table mountain pine) populations. Can. J. For. Res. 21:635–642.Google Scholar
  9. Hamrick, J. L., and Godt, M. J. W. (1989). Allozyme diversity in plant species. In Brown, A. H. D., Clegg, M. T., Kaher, A. L., and Weir, B. S. (eds.), Plant Population Genetics, Breeding, and Genetic Resources, Sunderland, Sinauer, pp. 43–63.Google Scholar
  10. Karron, J. D. (1991). Patterns of genetic variation and breeding systems in rare plant species. In Falk, D. A., and Holsinger (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, pp. 87–98.Google Scholar
  11. Karron, J. D., Linhart, Y. B., Chaulk, C. A., and Robertson, C. A. (1988). Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae). Am. J. Bot. 75:1114–1119.CrossRefGoogle Scholar
  12. Khasa, P. D., Newton, C.H., Rahman, M. H., Jaquish, B., and Dancik, B. P. (2000). Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43:439–448.PubMedCrossRefGoogle Scholar
  13. Ledig, F. T., and Conkle, M. T. (1983). Genetic diversity and genetic structure in a narrow endemic, Torrey pine (Pinus torreyana Parry ex Carr.). Evolution 37:79–85.CrossRefGoogle Scholar
  14. Ledig, F. T., Vargas-Hernandez, J. J., and Johnsen, K. H. (1998). The conservation of forest genetic resources: Case histories from Canada, Mexico, and the United States. J. For. 96:32–41.Google Scholar
  15. Lewandowski, A., and Mejnartowicz, L. (1991). Levels and patterns of allozyme variation in some European larch (Larix decidua) populations. Hereditas 115:221–226.Google Scholar
  16. Li, N., and Fu, L. K. (1997). Notes on gymnosperms I: Taxonomic treatments of some Chinese conifers. Novon 7(3):261–264.CrossRefGoogle Scholar
  17. Liu, Q. H., Wang, X. A., Tian, G. H., and Xiao, Y. P. (2001). Morphological and anatomical characteristics of leaf of Larix chinensis and their relationship to environmental factors in Taibaishan Mountain. Acta Botanica Boreali–Occidentalia Sinica 21(5):885–893.Google Scholar
  18. Maier, J. (1992). Genetic variation in European larch (Larix decidua Mill.). Ann. Sci. For. 49:39–47.Google Scholar
  19. Moran, G. F., Bell, J. C., and Eldridge, K. G. (1988). The genetic structure and the conservation of the five natural populations of Pinus radiata. Can. J. For. Res. 18:506–514.Google Scholar
  20. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.Google Scholar
  21. Pejic, I., Ajmone-Marsan, P., Morgante, M., Kozumplick, V., Castiglioni, P., Taramino, G., and Motto, M. (1998). Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 97:1248–1255.CrossRefGoogle Scholar
  22. Peng, H., Shang, L. B., and Sun, R. S. (1993). Composition and structure of Chinese larch forest in Qinling Mountains. J. Northwest Foresty College 8(3):33–38.Google Scholar
  23. Rohlf, F. J. (2002). NTSYSpc: Numerical taxonomy and multivariate analysis system, ver. 2.1. Exeter Sofware, Setauket, NY.Google Scholar
  24. Wang, G., Xu, A. S., Cai, X. X., and Li, L. C. (1998). Karyotype analysis of Larix chinesis Beissn. and L. griffithiana Hort. J. Fudan Univ. (Nat. Sci.) 37(4):481–484.Google Scholar
  25. Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.CrossRefGoogle Scholar
  26. Yan, G. Q., Zhao, G. F., and Hu, Z. H. (2001a). The study on Larix chinensis community characteristics and species diversity in Qinling Mts. Acta Botanica Boreali–Occidentalia Sinica 21(3):497– 506.Google Scholar
  27. Yan, G. Q., Zhao, G. F., Hu, Z. H., and Yue, M. (2001b). Population structure and dynamics of Larix chinensis in Qinling Mts. Chin. J. Appl. Ecol. 12(6):824–828.Google Scholar
  28. Yeh, F. C., Yang, R. C., and Boyle, T. J. B. (1999). PopGene Version 1.32. http://www.ualberta.ca/ ∼fyeh/.Google Scholar
  29. Ying, L., and Morgenstern, E. K. (1991). The population structure of Larix laricina in New Brunswick. Canada Silvae Genetica 40:180–184.Google Scholar
  30. Ying, J. S., and Zhang, Y. L. (1994). Chinese Endemic Genera of Spermatophytes, Science Press, Beijing (in Chinese).Google Scholar
  31. Yu, X. M., and Zhao, G. F. (2003). Studies on the microsporogenesis and the formation of the male gametophyte in Larix chinensis Beissn. Chin. Bull. Bot. 20(5):576–584.Google Scholar
  32. Yu, X. M., and Zhao, G. F. (2004). Female gametogeny, fertilization, embryogeny of Larix chinensis Beissn., and its systematic significance. Acta Botanica Boreali–Occidentalia Sinica 24(6):1024–1034.Google Scholar
  33. Zhao, G. F., Françous, F., and Philippe, K. (2001). Genetic variation and differentiation of Larix deciduas populations in Swiss Alps. Acta Botanica Sinica 43(7):731–735.Google Scholar
  34. Zhao, L. F. (2001). Genetic diversity and genetic structure in natural populations of Larix chinesis Beissn. Dissertation for M.D. of Northwest University (in Chinese).Google Scholar
  35. Zheng, W. J., Fu, L. G., and Cheng, J. R. (1975). Gymnospermae sinicae. Acta Phtotaxonomica Sinica 13(4):56–67.Google Scholar
  36. Zhou, Y. (1962). Preliminary study on the anatomical character of the Chinese larches (Larix chinensis Beissn.) and the grouping of the different species. Scientia Silvae Sinicae 2:97–116.Google Scholar
  37. Zhu, Z. C. (1979a). Preliminary study on vegetation evolution of the ice-eroded primary bare area in the high mountainous district of Taibaishan Mountains Qinling. Chin. Sci. Bull. 24(22):1041–1043.Google Scholar
  38. Zhu, Z. C. (1979b). Origin and development of vegetation on top of Taibaishan of Qinling Mts. J. Northwest Univ. (Nat. Sci.) 1:156–159.Google Scholar
  39. Zhu, Z. C. (1979c). Vicissitude of vegetation in Qinling Mts. J. Northwest Univ. (Nat. Sci.) 2:76–85.Google Scholar
  40. Zhu, Z. C. (1980). Preliminary analysis of the main types of larch forests in Qinling Mts. J. Northwest Univ. (Nat. Sci.) 4:57–64.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Xiao-Min Yu
    • 1
    • 2
  • Qing Zhou
    • 1
    • 2
  • Zeng-Qiang Qian
    • 1
    • 2
  • Shan Li
    • 1
    • 2
  • Gui-Fang Zhao
    • 1
    • 2
  1. 1.Biodiversity Research Center of Qinling MountainsSchool of Life Sciences, Northwest UniversityXi’anP.R. China
  2. 2.Key Laboratory of Resource Biology and Biotechnology in Western ChinaNorthwest University, Ministry of EducationXi’anP.R. China

Personalised recommendations