Biochemical Genetics

, Volume 44, Issue 5–6, pp 198–208 | Cite as

Phylogenetic Relationships and Possible Hybrid Origin of Lycoris Species (Amaryllidaceae) Revealed by ITS Sequences

  • Shude Shi
  • Yingxiong Qiu
  • Enxiang Li
  • Ling Wu
  • Chengxin Fu

To examine interspecific relationships and test the hypothesis of hybrid origin within Lycoris species, this study used data from parsimony analyses with nuclear ITS sequences for 19 taxa representing 14 species of Lycoris and two outgroup taxa. The ITS sequences resolved three infrageneric clades. One clade included L. chinensis, L. longituba, L. longituba var. flava, L. anhuiensis, and L. aurea; the second one consisted of L. sprengeri, L. radiata, L. radiata var. radiata, L. radiata var. pumila, L. haywardii, L. rosea, L. sanguinea var. sanguinea, and L. sanguinea var. koreana; and the third included L. caldwellii, L. straminea, L. albiflora, L. flavescens, and two hybrids. The results strongly support the hypothesis that L. straminea originated from hybridization between L. chinensis and L. radiata var. pumila, and the allotriploid L. caldwellii and L. albiflora derived from hybridization between L. chinensis and L. sprengeri. As nucleotide additivity was observed in the artificial hybrids and several presumed hybrids, the likelihood of hybrid origin of Lycoris species is supported.


Lycoris ITS interspecific hybridization phylogenetic relationships 



We extend special thanks to Dr. Siro Kurita (Chiba University, Japan), Mr. Luhuan Lou, and Mrs. Jinzhen Lin for kindly providing samples of some species in this study. We thank Dr. Alan W. Meerow (National Germplasm Repository, USDA, ARS-SHRS) for providing the ITS sequence of Ungernia flava and giving comments on the manuscript. The study was supported by grants from the National Science Foundation of China (grants 39870079 and 30170062).


  1. Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny Ann. Missouri Bot. Gard. 82:247–277CrossRefGoogle Scholar
  2. Birnboim H. C., Doyle J. J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA Nucl. Acids Res. 7:1513–1522PubMedGoogle Scholar
  3. Bose S., Flory W. S. (1963). A study of phylogeny and of karyotype evolution in Lycoris Nucleus 6:141–156Google Scholar
  4. Buchler E. S., Ippolito A., Holtsford T. P. (1997). The evolution of ribosomal rDNA: Divergent paralogues and phylogenetic implications Genetics 145:821–832Google Scholar
  5. Cox A. V., Pridgeon A. M., Albert V. A., Chase M. W. (1997). Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): Nuclear rDNA sequences Plant Syst. Evol. 208:197–223CrossRefGoogle Scholar
  6. Doyle J. J., Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue Phytochem. Bull. 19:11–15Google Scholar
  7. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap Evolution 39:783–791CrossRefGoogle Scholar
  8. Fu C. X., Kong H. H., Qiu Y. X., Cameron K. M. (2005). Molecular phylogeny of the East Asian-North American disjunct Smilax sect. Nemexia (Smilacaceae) Int. J. Plant. Sci. 166:301–309CrossRefGoogle Scholar
  9. Hsu P. S., Kurita S., Yu Z. Z., Lin J. Z., (1994). Synopsis of the genus Lycoris (Amaryllidaceae) Sida 16:301–331Google Scholar
  10. Ito M., Kawamoto A., Kita Y., Yukawa T., Kurita S. (1999). Phylogenetic relationships of amaryllidaceae based on matK sequence data J. Plant. Res. 112:207–216CrossRefGoogle Scholar
  11. Kim K. J., Jansen R. K. (1994). Comparisons of phylogenetic hypothesis among different data sets in dwarf dandelions (Krigia Asteraceae): Additional information from internal transcribed spacer sequences of nuclear ribosomal DNA Plant Syst. Evol. 190:157–185CrossRefGoogle Scholar
  12. Kim M., Lee S. (1991). A taxonomical study of the Korean Lycoris (Amaryllidaceae) Kor. J. Plant Tax. 21:123–139Google Scholar
  13. Kurita S. (1986). Variation and evolution on the karyotype of Lycoris, Amaryllidaceae: I, General karyomorphological characteristics of the genus Cytologia 51:803–815Google Scholar
  14. Kurita S. (1987). Chromosome evolution in Lycoris Proc. Jap. Soc. Plant Tax. 4:8–9Google Scholar
  15. Kurita S. (1988). Variation and evolution in karyotype of Lycoris, Amaryllidaceae: VII, Modes of karyotype alteration within species and probable trend of karyotype evolution in the genus Cytologia 53:323–335Google Scholar
  16. Kurita S., Hsu P. S. (1996). Hybrid complexes in Lycoris Amaryllidaceae Am. J. Bot. 89:207Google Scholar
  17. Lee N. S., Kim M., Lee B. S., Park K. R. (2001). Isozyme evidence for the allotroploid origin of Lycoris flavescens (Amaryllidaceae) Plant. Syst. Evol. 227:227–234CrossRefGoogle Scholar
  18. Lin, J. Z., Yu, Z. Z., and Hsu, P. S. (1990). Hybridization and breeding of Lycoris. In He, S. A. et al. (eds.), Proc. Int . Symp. Bot. Gard., pp. 557–568Google Scholar
  19. Liu Y., Hsu P. S. (1989). A study on karyotypes of the genus Lycoris Acta Phytotax. Sin. 27:257–264Google Scholar
  20. Lledó M. D., Davis A. P., Crespo M. B., Chase M. W., Fay M. F. (2004). Phylogenetic analysis of Leucojum and Galanthus (Amaryllidaceae) based on plastid matK and nuclear ribosomal spacer (ITS) DNA sequences and morphology Plant Syst. Evol. 246:223–243CrossRefGoogle Scholar
  21. McDade L. A. (1992). Hybrids and phylogenetic systematics II: The impact of hybrids on cladistic analysis Evolution 4:1329–1346CrossRefGoogle Scholar
  22. Meerow A. W., Clayton J. R. (2004). Generic relationships of the baccate-fruited Amaryllidaceae (tribe Haemantheae) Plant Syst Evol 244:141–155CrossRefGoogle Scholar
  23. Meerow A. W., Snijman D. A. (2001). Phylogeny of Amaryllidaceae tribe Amaryllideae based on nrDNA ITS sequences and morphology Am. J. Bot. 88:2321–2330Google Scholar
  24. Meerow A. W., van der Werff H. (2004). Pucara (Amaryllidaceae) reduced to synonymy with Stenomesson on the basis of nuclear and plastid DNA spacer sequences, and a new related species of Stenomesson Syst. Bot. 29:511–517CrossRefGoogle Scholar
  25. Meerow A. W., Fay M. F., Guy C. L., Li Q. B., Zaman F. Q., Chase M. W. (1999). Systematics of Amaryllidaceae based on cladistic analysis of plastid sequence data Am. J. Bot. 86:1325–1345PubMedCrossRefGoogle Scholar
  26. Meerow A. W., Guy C. L., Li Q. B., Yang S-L. (2000). Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences Syst. Bot. 25:708–726CrossRefGoogle Scholar
  27. Meerow A. W., Guy C. L., Li Q-B., Clayton J. R. (2002). Phylogeny of the tribe Hymenocallideae (Amaryllidaceae) based on morphology and molecular characters Ann. Missouri Bot. Gard. 89:400–413CrossRefGoogle Scholar
  28. Meerow A. W., Lehmiller D., Clayton J. R. (2003). Phylogeny and biogeography of Crinum L. (Amaryllidaceae) inferred from plastid and nuclear non-coding DNA sequences Bot. J. Linnean Soc. 141:349–363CrossRefGoogle Scholar
  29. Mummenhoff K., Linder P., Friesen N., Bowman J. L., Lee J. Y., Franzke A. (2004). Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand Am. J. Bot. 91:254–261Google Scholar
  30. Rogers S. O., Bendich A. J. (1987). Ribosomal RNA genes in plants: Variability in copy number and in the intergenic spacer Plant Mol. Biol. 9:509–520CrossRefGoogle Scholar
  31. Schlotterer C. (1998). Ribosomal DNA probes and primers. In: Karp A., Isaac P. G., Ingram D. S. (eds), Molecular Tools for Screening Biodiversity. Chapman & Hall, an imprint of Thomson Science, Boundary Row, London, UK, pp. 267–276Google Scholar
  32. Swofford D. L. (2001). PAUP. Phylogenetic Analysis Using Parsimony. Version 4.0b10. Sinauer Associates, Sunderland, MassGoogle Scholar
  33. Tsi, Z. H., and Meerow, A. W. (2000). Amaryllidaceae. In Wu, C. Y., and Raven, P. H. (eds.), Flora of China, Beijing Science Press and Missouri Botanical Garden Press 24, pp. 264Google Scholar
  34. Volkov R. A., Borisjuk N. V., Panchuk I. I., Schweizer D., Hemleben V. (1999). Elimination and rearrangement of parental rDNA in the alloteraploid Nicotiana tabacum Mol. Biol. Evol. 16:311–320PubMedGoogle Scholar
  35. Wendel J. F., Schnabel A., Seelanan T. (1995). An unusual ribosomal DNA sequence from Gossypium gossypiodes reveals ancient, cryptic, intergenomic introgression Mol. Phyl. Evol. 4:298–313CrossRefGoogle Scholar
  36. White T. J., Bruns T., Lee S., Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D., Sninsky J., White T. (eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, Calif. pp. 315–322Google Scholar
  37. Wissemann V. (1999). Genetic constitution of Rosa sect. Caninae (R. canina, R. jundzillii) and sect. Gallicanae (R. gallica) J. Appl. Bot. 73:191–196Google Scholar
  38. Xu Y., Hu Z. B., Huang X. L., Fan G. J. (1982). New taxa of the genus Lycoris from China Acta. Phytotxa. Sin. 20:196–198Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Shude Shi
    • 1
  • Yingxiong Qiu
    • 1
  • Enxiang Li
    • 1
  • Ling Wu
    • 2
  • Chengxin Fu
    • 1
  1. 1.Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life SciencesZhejiang UniversityHangzhouP.R. China
  2. 2.Hangzhou Botanical GardenHangzhouP.R. China

Personalised recommendations