Biochemical Genetics

, Volume 44, Issue 5–6, pp 270–285 | Cite as

Mitochondrial cytochrome b Sequence Variation and Phylogenetics of the Highly Specialized Schizothoracine Fishes (Teleostei: Cyprinidae) in the Qinghai-Tibet Plateau

  • Delin Qi
  • Taiping Li
  • Xinquan ZhaoEmail author
  • Songchang Guo
  • Junxiang Li


The complete 1140 bp mitochondrial cytochrome b sequences were obtained from 39 individuals representing five species of all four genera of highly specialized schizothoracine fishes distributed in the Qinghai-Tibet plateau. Sequence variation of the cytochrome b gene was surveyed among the 39 individuals as well as three primitive schizothoracines and one outgroup. Phylogenetic analysis suggested that the group assignment based on 1140 bp of the cytochrome b sequence is obviously different from previous assignments, and the highly specialized schizothoracine fishes (Schizopygopsis pylzovi, Gymnocypris przewalskii, G. eckloni, Chuanchia labiosa, and Platypharodon extremus) form a monophyletic group that is sister to the clade formed by the primitive schizothoracine fishes (Schizothorax prenanti, S. pseudaksaiensis, and S. argentatus). The haplotypes of Schizopygopsis pylzovi and G. przewalskii were paraphyletic based on cytochrome b data, which most likely reflected incomplete sorting of mitochondrial DNA lineages. The diploid chromosome numbers of Schizothoracinae were considered in phylogenetic analysis and provided a clear pattern of relationships. Molecular dating estimated for highly specialized schizothoracine fishes suggested that the highly specialized schizothoracine fishes diverged in the late Miocene Pliocene to Pleistocene (4.5 × 104–4.05 × 10years BP). The relationship between the cladogenesis of highly specialized schizothoracine fishes and geographical events of the Qinghai-Tibet plateau is discussed.


Schizothoracinae mtDNA cytochrome b biogeography diploid chromosome numbers 



The authors thank Dr. B. W. Murray for valuable comments on the manuscript. This work was supported by the Ministry of Education Foundation for University Key Teachers and the National Natural Science Foundation of China (39860060). In order to extensively investigating the phylogenetic relationships of the subfamily Schizothoracinae, this work further supported by National Basic Research Project (No. 2005CB422005) in China.


  1. Anderson S., Bankier A. T., Barrell B. G., De Bruijn M. H L., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F., Schreier P. H., Smith A. J. H., Staden R., Young I. G. (1981). Sequence and organization of the human mitochondrial genome Nature 290:457–465PubMedCrossRefGoogle Scholar
  2. Avise J. C. (1986). Mitochondrial DNA and the evolutionary genetics of higher animals. Phil. Trans. R. Soc. Lond. 312:325–342. Google Scholar
  3. Avise J. C., Saunders N. C. (1984). Hybridization and introgression among species of sunfish (Lepomis): Analysis by mitochondrial DNA and allozyme markers Genetics 108:237–255PubMedGoogle Scholar
  4. Bermingham E., Avise J. C. (1986). Molecular zoogeography of freshwater fishes in the southeastern United States Genetics 113(4):939–965PubMedGoogle Scholar
  5. Bian Q. T., Liu J. Q., Luo X. Q., Xiao J. L. (2000). Geotectonic setting, formation, and evolution of the Qinghai Lake Seismology and Geology 22(1):20–26Google Scholar
  6. Billington N., Hebert P. D. N. (1988). Mitochondrial DNA variation in Great Lakes walleye (Stizostedion vitreum) populations Can. J. Fish. Aquat. Sci. 45:643–654CrossRefGoogle Scholar
  7. Brown W. M., George M. Jr., Wilson A. C. (1979). Rapid evolution of animal mitochondrial DNA Proc. Natl. Acad. Sci. USA 76:1967–1971PubMedCrossRefGoogle Scholar
  8. Brown W. M., Prager E. M., Wang A., Wilson A. C. (1982). Mitochondrial DNA sequences of primates: Tempo and mode of evolution J. Mol. Evol. 18:225–239PubMedCrossRefGoogle Scholar
  9. Burridge C. P. (1999). Molecular phylogeny of Nemadactylus and Acantholatris (Perciformes: Cirrhitoides: Cheilodactylidae), with implications for taxonomy and biogeography Mol. Phyl. Evol. 13(1):93–109CrossRefGoogle Scholar
  10. Caccone A., Milinkovitch M. C., Sbordoni V., Powell J. R. (1997). Mitochondrial DNA rates and biogeography in European newts (genus Euproctus) Syst. Biol. 46:126–144PubMedCrossRefGoogle Scholar
  11. Cantarore P., Roberti M., Pesole G., Ludovico A., Millella F., Gadaleta M. N., Saccone C. (1994). Evolutionary analysis of cytochrome b sequences in some Perciformes: Evidence for a slower rate of evolution than in mammals J. Mol. Evol. 39:589–597CrossRefGoogle Scholar
  12. Cavender T. M., Coburn. M. M. (1992). Phylogenetic relationships of North American Cyprinidae. In: Mayden R. L. (eds), Systematics, Historical Ecology, and North American Freshwater Fishes. Stanford Univ. Press, Stanford, pp. 293–327Google Scholar
  13. Chang Y. S., Huang F. L., Lo T. B. (1994). The complete nucleotide sequence and gene organization of carp (Cyprinus caryio) mitochondrial genome J. Mol. Evol. 38:138–155PubMedCrossRefGoogle Scholar
  14. Chen X. L., Yue P. Q., Lin R. D. (1984). Major groups within the family Cyprinidae and their phylogenetic relationships Acta. Zootaxon. Sinica 9:424–440Google Scholar
  15. Cook C. E., Wang Y., Sensabaugh G. (1999). A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region Mol. Phyl. Evol. 12(1):47–56CrossRefGoogle Scholar
  16. Durand J. D., Tsigenopoulos C. S., Unlu E., Berrebi P. (2002). Phylogeny and biogeography of the family Cyprinidae in the Middle East inferred from cytochrome b DNA: Evolutionary significance of this region Mol. Phyl. Evol. 22(1):91–100CrossRefGoogle Scholar
  17. Felsenstein J. (1993). Phylip (Phylogeny inference package) version 3.5c. Seattle, University of WashingtonGoogle Scholar
  18. Gilles A., Lecointre G., Faure E., Chappaz R., Brun G. (1998). Mitochondrial phylogeny of the European cyprinids: Implications for their systematics, reticulate evolution, and colonization time Mol. Phyl. Evol. 10:132–143CrossRefGoogle Scholar
  19. Gilles A., Lecointre G., Miquelis A., Chappaz R., Brun G. (2001). Partial combination applied to phylogeny of European cyprinids using the mitochondrial control region Mol. Phyl. Evol. 19(1):22–33CrossRefGoogle Scholar
  20. Goodman M., Miyamoto M. M., Czelusniak J. (1987). Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. In: Patterson C. (eds), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge Univ. Press, Cambridge, pp. 141–176Google Scholar
  21. Greenwood P. H. (1966). Phyletic studies of the teleostean fishes with provisional classification of living forms Bull. Am. Mus. Nat. Hist. 131(4):339–456Google Scholar
  22. Groves P., Shields G. F. (1996). Phylogenetics of the Caprinae on cytochrome b sequence Mol. Phyl. Evol. 5(3):467–476CrossRefGoogle Scholar
  23. Irwin D. M., Kocher T. D., Wilson A. C. (1991). Evolution of the cytochrome b gene in mammals J. Mol. Evol. 32:128–144PubMedGoogle Scholar
  24. Kimura M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences Proc. Natl. Acad. Sci. USA 78:454–458PubMedCrossRefGoogle Scholar
  25. Kumar S., Tamura K., Nei M. (1993). MEGA: Molecular Evolutionary Genetics Analysis, Version 1.0. Pennsylvania State Univ., University ParkGoogle Scholar
  26. Li J. J., Fang X. M. (1998). Uplift of the Tibetan Plateau and environmental changes Chinese Sci. Bull. 44(23):2117–2125CrossRefGoogle Scholar
  27. Martin A. P. (1995). Mitochondrial DNA sequence evolution in sharks: Rates, patterns, and phylogenetic inferences Mol. Biol. Evol. 12:1114–1123PubMedGoogle Scholar
  28. McVeigh H. P., Davidson W. S. (1991). A salmonid phylogeny inferred from mitochondrial cytochrome b gene sequences J. Fish Bio. 39(Supplement A):277–282CrossRefGoogle Scholar
  29. Meyer A. (1993). Evolution of mitochondrial DNA in fishes. In: Hochachka P. W., Mommsen T. P. (eds), The Biochemistry and Molecular Biology of Fishes, Vol. 2. Elsevier, Amsterdam, pp. 1–38Google Scholar
  30. Mirza M. R. (1991). A contribution to the systematics of the Schizothoracine fishes (Pisces: Cyprinidae) with the description of three new tribes Pakistan J. Zool. 23:339–341Google Scholar
  31. Neigel J. E., Avise J. C. (1986). Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Nevo E., Karlin S. (eds), Evolutionary Processes and Theory. Academic Press, New York, pp. 515–534Google Scholar
  32. Patterson C. (1987). Introduction. In: Patterson C. (ed), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge Univ. Press, Cambridge, pp. 1–22Google Scholar
  33. Perdices A., Cunha C., Coelho M. (2004). Phylogenetic structure of Zacco platypus (Teleostei, Cyprinidae) populations on the upper and middle Chang Jiang (Yangtze) drainage inferred from cytochrome b sequences Mol. Phyl. Evol. 31(1):192–203CrossRefGoogle Scholar
  34. Qi D. L. (2004). Preliminary studies on chromosome karyotype and polyploidy of Qinghai Lake naked carp J. Qinghai Univ. 22(2):44–47Google Scholar
  35. Song C. H, Fang X. M., Li J. J., Gao J. P., Sun D., Nie J. S., Yan M. D. (2003). Sedimentary evolution of the Guide Basin in the Cenozoic and the uplift of the Qinghai-Tibet plateau Geol. Rev. 49(4):337–346Google Scholar
  36. Swofford D. (1993). PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Illinois Natural History Survey, Champaign, 11Google Scholar
  37. Tang Q. Y., Yang X. P., Liu H. Z. (2003). Biogeographical process of Spinibarbus caldwelli revealed by sequence variations of mitochondrial cytochrome b gene Acta Hydrobio. Sinica 27(4):352–356Google Scholar
  38. Wilson, G. M., Thomas, W. K., and Beckenbach, A. T. (1985). Intra- and inter-specific mitochondrial DNA sequence in Salmo: Rainbow, steelhead, and cutthroat trouts. Can. Zool. 63: 2088–2094CrossRefGoogle Scholar
  39. Wu X. W. (1964). The Fauna of Chinese Cyprinidea in China. Shanghai Science and Technology Press, ShanghaiGoogle Scholar
  40. Wu Y. F., Chen Y. Y. (1980). Fossil Cyprinid fishes from the late tertiary of north Xizang, China Verteb Palasiatica 18(1):15–18Google Scholar
  41. Wu Y. F., Tan Q. J. (1991). Characteristics of the fish-fauna of the Qinghai-Xizang plateau and its geological distribution and formation Acta Zool. Sinica 37(2):135–152Google Scholar
  42. Wu Y. F., Wu C. Z. (1992). The Fishes of the Qinghai-Xizang Plateau. Sichuan Publishing House of Science and Technology, ChengduGoogle Scholar
  43. Xiao W., Zhang Y., Liu H. (2001). Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia Mol. Phyl. Evol. 18(2):163–173CrossRefGoogle Scholar
  44. Yuan B. Y., Chen K. Z., Bowler J. M., Ye S. J. (1990). The forming and evolution of the Qinghai Lake Quaternary Science 3:233–243Google Scholar
  45. Yue P. Q., Chen Y. Y. (1998). China Red Book of Endangered Animals, Pisces. Science Press, BeijingGoogle Scholar
  46. Yu X. Y., Li Y. C., Zhou T. (1990). Study on chromosome karyotype of Chinese Cyprinidae: Chromosome karyotype of eight Schizothoracines J. Wuhan Univ. 2(2):97–103Google Scholar
  47. Zardoya R., Doadrio I. (1999). Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids J. Mol. Evol. 49:227–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Delin Qi
    • 1
    • 2
  • Taiping Li
    • 3
  • Xinquan Zhao
    • 1
    Email author
  • Songchang Guo
    • 1
    • 2
  • Junxiang Li
    • 3
  1. 1.Northwest Plateau Institute of BiologyChinese Academy of ScienceXiningP.R. China
  2. 2.Graduate SchoolChinese Academy of ScienceBeijingP.R. China
  3. 3.College of Agriculture and Animal ScienceQinghai UniversityXiningP.R. China

Personalised recommendations