Biochemical Genetics

, Volume 44, Issue 3–4, pp 110–120 | Cite as

Major Histocompatibility Complex Variation in the Endangered Crested Ibis Nipponia nippon and Implications for Reintroduction

  • Bei Zhang
  • Sheng-Guo FangEmail author
  • Yong-Mei Xi


The major histocompatibility complex (MHC), with its extraordinary levels of genetic variation, is thought to be an essential aspect of the ability of an organism to recognize different parasites and pathogens. It has also been proposed to regulate reproductive processes in many aspects. Here we examine the genetic variation of the second exon of the MHC class II B genes of the crested ibis, an endangered species known to descend from just two breeding pairs rediscovered in 1981. Only five alleles are identified by single-strand conformation polymorphism (SSCP) analysis of 36 samples taken from both wild and captive populations, and a comparatively low level of divergence between MHC alleles is observed. We suggest that representative sampling of individuals with most of the different MHC allele genotypes to constitute a founder population, together with the monitoring of the pathogen status of candidate sites before release, is of great importance for raising the success rate of reintroduction for the crested ibis.

Key Words

Genetic diversity population bottleneck conservation SSCP 



We are grateful to Shaanxi Crested Ibis Breeding Centre for providing all the samples used in this study, as well as to Dr. Wan Q.H., Dr. Wu H., Dr. Wu H.L., Dr. Xu Y.C., and Mr. Wood for their valuable comments on the manuscript. This work was supported by a grant from the State Key Basic Research and Development Plan of P.R. China (No. G2000046906) and a special grant for crested ibis from the State Forestry Administration, P.R. China.


  1. Bassam, B. J., Caetano-Anolles, G., and Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196(1):80–83.PubMedCrossRefGoogle Scholar
  2. Bird Life International (2001). Threatened Birds of Asia: The Bird Life International Red Data Book, Bird Life International, Cambridge, UK.Google Scholar
  3. Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stem, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA-DRI. Nature 364:33–39.PubMedCrossRefADSGoogle Scholar
  4. Ding, C. Q., and Liu, D. P. (2002). Crested Ibis Nipponia nippon. Chin. J. Zool. 37:84.Google Scholar
  5. Edwards, S. V., Grahn, M., and Potts, W. K. (1995). Dynamics of Mhc evolution in birds and crocodilians: Amplification of class II genes with degenerate primers. Mol. Ecol. 4:719–729.PubMedGoogle Scholar
  6. Edwards, S. V., and Potts, W. K. (1996). Polymorphism of gene in the major histocompatibility complex (MHC): Implications for conservation genetics of vertebrates. In Smith, T. B., and Wayne, R. K. (eds.), Molecular Genetic Approaches in Conservation, Oxford University Press, New York, pp. 214–236.Google Scholar
  7. Fan, G. L., Yang, Z. Q., Gao, G. G., Bin, J. J., Qiao, H. L., Huang, Z. X., and Hou, Y. F. (2004). The histopathological observations of young crested ibis infected with Escherichia coli. Chin. J. Zool. 39(3):44–46.Google Scholar
  8. Fan, G. L., Zhou, H. C., Yang, M. Q., Pu, P., Yang, Z. Q., Cao, Y. H., Fu, W. K., and Lu, B. Z. (2001). The pathological observation of young crested ibis newcaste disease. J. Northwest Sci. Tech. Univ. Agric. For. (Nat. Sci. Ed.) 29(6):79–82.Google Scholar
  9. Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). Introduction to Conservation Genetics, Cambridge University Press, Cambridge, UK.Google Scholar
  10. Guillemot, F., Billault, A., Pourquie, O., Behar, G., Chausse, A. M., Zoorob, R., Kreibich, G., and Auffray, C. (1988). A molecular map of the chicken major histocompatibility complex: The class II genes are closely linked to the class I genes and the nucleolar organizer. EMBO J 7(9):2775–2785.PubMedGoogle Scholar
  11. Hancock, J. A., Kushlan, J. A., and Kahl, M. P. (1992). Storks, Ibises, and Spoonbills of the World, Academic, London.Google Scholar
  12. Hedrick, P. W. (1996). Conservation genetics and molecular techniques: A perspective. In Smith, T. B., and Wayne, R. K. (eds.), Molecular Genetic Approaches in Conservation, Oxford University Press, New York, pp. 459–477.Google Scholar
  13. Hedrick, P. W., and Kim, T. J. (2000). Genetics of complex polymorphisms: Parasites and maintenance of MHC variation. In Singh, R. S., and Krimbas, C. B. (eds.), Evolution Genetics: From Molecules to Morphology, Cambridge University Press, Cambridge, UK, pp. 204–234.Google Scholar
  14. Hedrick, P. W., Lee, R., and Parker, K. M. (2000a). Major histocompatibility complex (MHC) variation in the endangered Mexican wolf and related canids. Heredity 85:617–624.PubMedCrossRefGoogle Scholar
  15. Hedrick, P. W., Parker, K. M., Gutierrez-Espeleta, G. A., Rattink, A., and Lievers, K. (2000b). Major histocompatibility complex variation in the Arabian oryx. Evolution 54:2145–2151.PubMedCrossRefGoogle Scholar
  16. Hedrick, P. W., Parker, K. M., Miller, E. L., and Miller, P. L. (1999). Major histocompatibility complex variation in the endangered Przewalski’s horse. Genetics 152:1701–1710.PubMedGoogle Scholar
  17. Hess, C. M., and Edwards, S. V. (2002). The evolution of the major histocompatibility complex in birds. Bioscience 52(5):423–431.CrossRefGoogle Scholar
  18. Hoelzel, A. R., Stephens, J. C., and O’Brien, S. J. (1999). Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. Mol. Biol. Evol. 16(5):611–618.PubMedGoogle Scholar
  19. Jeffery, D. J. M., and Bangham, C. R. M. (2000). Do infectious diseases drive MHC diversity? Microb. Infect. 2:1335–1341.CrossRefGoogle Scholar
  20. Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In Munro, H. N. (ed.), Mammalian Protein Metabolism, Academic, New York, pp. 21–132.Google Scholar
  21. Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001). MEGA2: Molecular Evolutionary Genetics Analysis Software. Arizona State University, Tempe.Google Scholar
  22. Langefors, A., Lohm, J., Grahn, M., Andersen, O., and von Schantz, T. (2001). Association between major histocompatibility complex class II B alleles and resistance to Aeromons salmonicida in Atlantic salmon. Proc. R. Soc. Lond. B 268:479–485.CrossRefGoogle Scholar
  23. Liu, Y. Z. (1981). Rediscovery of crested ibis Nipponia nippon in Qinling Mountain. Chin. J. Zool. 27:237.ADSGoogle Scholar
  24. Lohm, J., Grahn, M., Langefors, A., Andersen, O., Storset, A., and von Schantz, T. (2002). Experimental evidence for major histocompatibility complex allele-specific resistance to a bacterial infection. Proc. R. Soc. Lond. B 2114:2029–2034.CrossRefGoogle Scholar
  25. Lokki, M. L., and Laitinen, T. (2001). Role of major histocompatibility complex class III genes in recurrent spontaneous abortions. Front. Biosci. 6:E23–E29.PubMedGoogle Scholar
  26. Mikko, S., Spencer, M., Morris, B., Stabile, S., Basu, T., Stormont, C., and Andersson, L. (1997). A comparative analysis of Mhc DRB3 polymorphism in the American bison (Bison bison). J. Hered. 88:499–503.PubMedGoogle Scholar
  27. Nei, M., and Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3:418–426.PubMedGoogle Scholar
  28. Parham, P. (1999). Virtual reality in the MHC. Immunol. Rev. 167:5–15.PubMedCrossRefGoogle Scholar
  29. Paterson, S., Wilson, K., and Pemberton, J. M. (1998). Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc. Natl. Acad. Sci. U.S.A. 95:3714–3719.PubMedCrossRefADSGoogle Scholar
  30. Penn, D. J., and Potts, W. K. (1998). How do major histocompatibility complex genes influence odor and mating preferences? Adv. Immunol. 69:411–436.PubMedCrossRefGoogle Scholar
  31. Richardson, D. S., and Westerdahl, H. (2003). MHC diversity in two Acrocephalus species: The outbred great reed warbler and the inbred Seychelles warbler. Mol. Ecol. 12:3523–3529.PubMedCrossRefGoogle Scholar
  32. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, New York.Google Scholar
  33. Sunnucks, P., Wilson, A. C. C., Beheregaray, L. B., Zenger, K., French, J., and Taylor, A. C. (2000). SSCP is not so difficult: The application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol. Ecol. 9:1699–1710.PubMedCrossRefGoogle Scholar
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The Clustal X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876–4882.PubMedCrossRefGoogle Scholar
  35. Wang, S. (1998). China Red Data Book of Endangered Animals: Aves, Science Press, Beijing.Google Scholar
  36. Xi, Y. M., Lu, B. Z., and Fujihara, N. (2001). Captive rearing and breeding of the crested ibis, Nipponia nippon. J. Poult. Sci. 38:213–224.CrossRefGoogle Scholar
  37. Xi, Y. M., Lu, B. Z., Zhang, Y. M., and Fujihara, N. (2002). Restoration of the crested ibis, Nipponia nippon. J. Appl. Anim. Res. 22:193–200.Google Scholar
  38. Xu, Y. X., Pitcovski, J., Peterson, L., Auffray, C., Bourlet, Y., Gerndt, B. M., Nordskog, A. W., Lamont, S. J., and Warner, C. M. (1989). Isolation and characterization of three class II major histocompatibility complex genomic clones from the chicken. J. Immunol. 142(6):2122–2132.PubMedGoogle Scholar
  39. Yamashina, Y. (1975). The feeding of Japanese crested ibis. In Temple, S. A. (ed.), Endangered Birds, University of Wisconsin Press, Madison, pp. 161–164.Google Scholar
  40. Zhang, B., Fang, S. G., and Xi, Y. M. (2004). Low genetic diversity in the endangered crested ibis Nipponia nippon and implications for conservation. Bird Conserv. Int. 14:183–190.CrossRefGoogle Scholar
  41. Zhou, H. C., Fan, G. L., Cao, Y. H., Fu, W. K., Lu, B. Z., and Xi, Y. M. (2000). The pathological diagnosis of the death of a domesticated crested ibis. Acta Univ. Agric. Boreali-Occidentalis 28(2):60–63.Google Scholar
  42. Zhou, H. C., Fan, G. L., Lin, Q., Yang, M. Q., Zhang, L. L., Cao, Y. H., Lou, X. R., and Lu, B. Z. (2001a). The pathological observations of crested ibis Eustrongyloides sp. J. Northwest Sci. Tech. Univ. Agric. For. (Nat. Sci. Ed.) 29(5):27–29.Google Scholar
  43. Zhou, H. C., Yang, M. Q., Fan, G. L., Fu, W. K., Cao, Y. H., Li, H. L., and Zheng, J. J. (2001b). The pathological diagnosis of the death of the two crested ibis. J. Northwest Sci. Tech. Univ. Agric. For. (Nat. Sci. Ed.) 29(3):69–72.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.College of Life Sciences, Zhejiang University, and State Conservation Center for Gene Resources of Endangered WildlifeKey Laboratory of Conservation Genetics and Reproductive Biology for Endangered Wild Animals of the Ministry of EducationHangzhouP.R. China

Personalised recommendations