Biochemical Genetics

, Volume 44, Issue 1–2, pp 44–57 | Cite as

AFLP Analysis of Genetic Diversity of the Endangered Species Sinopodophyllum hexandrum in the Tibetan Region of Sichuan Province, China

  • Meng Xiao
  • Qun Li
  • Liang Guo
  • Tong Luo
  • Wen-Xia Duan
  • Wen-Xing He
  • Li Wang
  • Fang Chen

Amplified fragment length polymorphism (AFLP) markers were used to estimate the genetic diversity of seven wild populations of Sinopodophyllum hexandrum (Royle) Ying from the Tibetan region of Sichuan Province, China. Six primer combinations generated a total of 428 discernible DNA fragments, of which 111 were polymorphic. The percentage of polymorphic bands (PPB) was 25.93 at the species level, and PPB within population ranged from 4.91 to 12.38%. Genetic diversity (H E) within populations varied from 0.01 to 0.04, averaging 0.05 at the species level. As revealed by the results of AMOVA analysis, 58.8% of the genetic differentiation occurred between populations, and 41.2% within populations. The genetic differentiation was, perhaps, due to the limited gene flow (N m=0.43) of the species. The correlation coefficient (r) between genetic and geographical distance using Mantel's test for all populations was 0.698 (P=0.014). The UPGMA cluster analysis revealed a similar result in that the genetic distances among the populations show, to a certain extent, a spatial pattern corresponding to their geographic locations. On the basis of the genetic and ecological information, we propose some appropriate strategies for conserving the endangered S. hexandrum in this region.


Sinopodophyllum hexandrum amplified fragment length polymorphism (AFLP) genetic diversity conservation 



We are grateful to Jian-Kang Kuang, Qin Cai, Chang-Ying Yang, Chao-Yun Chen, Shao-Lu Qi, Xing Liu, and Zhao-Hua Yan for providing assistance in field sample collecting. We also thank Prof. Shui-Hua Wang and Ying Xu for being helpful in technique and writing. The research was completed in the Key Laboratory of Resource Biology and Pharmaceutical Engineering, Sichuan University.


  1. Ajmone-Marsan, P., Negrini, R., Crepaldi, P., Milanesi, E., Gorni, C., Valentini, A., and Cicogna, M. (2001). Assessing genetic diversity in Italian goat populations using AFLP markers. Anim. Genet. 32:281–288.CrossRefPubMedGoogle Scholar
  2. Barrett, S. C. H., and Kohn, J. R. (1991). Genetics and evolutionary consequences of small population size in plants: Implications for conservation. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, pp. 3–30.Google Scholar
  3. Bassam, B. J., Caetano-Anolles, and Gresshoff, P. M. (1991). Fast and sensitive silver straining of DNA in polyacrylamide gels. Anal. Biochem. 196:80–83.CrossRefPubMedGoogle Scholar
  4. Canel, C., Moraes, R. M., Dayan, F. E., and Ferreira, D. (2000). Molecules of interest: Podophyllotoxin. Phytochemistry 54:115–120.CrossRefPubMedGoogle Scholar
  5. Chatterjee, R. (1952). Indian Podophyllum. Econ. Bot. (Indian) 6:342–354.Google Scholar
  6. Chen, Y.-H. (1979). A study on the resources of Chinese Podophyllin plants. Acta Pharm. Sin. 14:101–107.Google Scholar
  7. Curtis, J. M. R., and Taylor, E. B. (2003). The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol. Conserv. 115:45–54.CrossRefGoogle Scholar
  8. De Knijff, P., Denkers, F., van Swelm, N. D., and Kuiper, M. (2001). Genetic affinities within the herring gull Larus argentatus assemblage revealed by AFLP genotyping. J. Mol. Evol. 52:85–93.PubMedGoogle Scholar
  9. Ellstrand, N. C., and Elam, D. R. (1993). Population genetics consequences of small population size: Implications for plant conservation. Ann. Rev. Ecol. Syst. 24:217–243.CrossRefGoogle Scholar
  10. Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Applications to human mitochondrial DNA restriction data. Genetics 131:479–491.PubMedGoogle Scholar
  11. Folkertsma, R. T., Rouppe van der Voort, J. N., de Groot, K. E., van Zandvoort, P. M., Schots, A., Gommers, F. J., Helder, J., and Bakker, J. (1996). Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis. Mol. Plant–Microbe Interact. 9:47–54.PubMedGoogle Scholar
  12. Francisco-Ortega, J., Santos-Guerra, A., Kim, S. C., and Crawford, D. J. (2000). Plant genetic diversity in the Canary Islands: A conservation perspective. Am. J. Bot. 87:909.CrossRefPubMedGoogle Scholar
  13. Fritsch, P., and Rieseberg, L. H. (1996). The use of Random Amplified Polymorphic DNA (RAPD) in conservation genetics. In Smith, T. B., and Wayne, R. K. (eds.), Molecular Genetic Approaches in Conservation, Oxford University Press, New York, pp. 54–73.Google Scholar
  14. Fu, L.-G. (1992). Plant Red Book of China: Rare Threatened Plants, Science Press, Beijing, pp. 184–185.Google Scholar
  15. Ge, S., Wang, H.-Q., Zhang, C.-M., and Hong, D.-Y. (1997). Genetic diversity and population differentation of Cathaya argyophylla in Bamian Mountain. Acta Bot. Sin. 39:266–271.Google Scholar
  16. Hamrick, J. L. (1983). The distribution of genetic variation within and among natural plant populations. In Schonewald-Cox, C. M., Chambers, S. M., McBryde, B., and Thomas, W. L. (eds.), Genetics and Conservation, Benjamin/Cummings, Menlo Park, CA, pp. 335–348.Google Scholar
  17. Hamrick, J. L., and Godt, M. J. W. (1989). Allozyme diversity in plant species. In Brown, A. H. D., Clegg, M. T., Kahler, A. L., and Weir, B. S. (eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer, Sunderland, MA, pp. 43–63.Google Scholar
  18. Han, T. H., de Jeu, M., van Eck, H., and Jacobsen, E. (2000). Genetic diversity of Chilean and Brazilian Alstroemeria species assessed by AFLP analysis. Heredity 84:564–569.CrossRefPubMedGoogle Scholar
  19. Hogbin, P. M., and Peakall, R. (1999). Evaluation of the conservation of genetic research to the management of endangered plant Zieria prostrata. Conserv. Biol. 13:514–522.CrossRefGoogle Scholar
  20. Hunter, M. L. (1996). Fundamentals of Conservation Biology, Blackwell Sciences, London.Google Scholar
  21. Issell, B. F., Muggia, F. M., and Carter, S. K. (1984). Etoposide (VP-16): Current Status and New Developments, Academic Press, Orlando, FL.Google Scholar
  22. Jiang, C.-S., Jia, H.-S., Ma, X.-R., Zou, D.-M., and Zhang, Y.-Z. (2004). AFLP analysis of genetic variability among Stylosanthes guianensis accessions resistant and susceptible to the Stylo Anthracnose. Acta Bot. Sin. 46:480–488.Google Scholar
  23. Jin, Y., Zhang, W.-J., Fu, D.-X., and Lu, B.-R. (2003). Sampling strategy within a wild soybean population based on its genetic variation detected by ISSR markers. Acta Bot. Sin. 45:995–1002.Google Scholar
  24. Kalisz, S., Hanzawa, F. M., Tonsor, S. J., Thiede, D. A., and Voigt, S. (1999). Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology 80:2620–2634.CrossRefGoogle Scholar
  25. Lamote, V., Roldán-Ruiz, I., Coart, E., De Loose, M., Van Bockstaele, E. (2002). A study of genetic variation in Iris pseudacorus populations using amplified fragment length polymorphisms (AFLPs). Aquatic Bot. 73:19–31.CrossRefGoogle Scholar
  26. Lewontin, R. C. (1972). The apportionment of human diversity. Evol. Biol. 6:381–398.Google Scholar
  27. Li, G.-M. (1975). Introduction to a medicine plant, Sinopodophyllum emodi Wall. var. chinense Sprague. J. Bot. 2:28.Google Scholar
  28. Loh, J. P., Kiew, R., Set, O., Gan, L. H., and Gan, Y. Y. (2000). Study of genetic variation and relationships within the bamboo subtribe Bambusinae using amplified fragment length polymorphism. Ann. Bot. 85:607–612.CrossRefGoogle Scholar
  29. Ma, S.-B., and Hu, Z.-H. (1996a). A karyotypic study on Podophylloideae (Berberidaceae). Acta Bot. Yunnanica 18:325–330.Google Scholar
  30. Ma, S.-B., and Hu, Z.-H. (1996b). Preliminary studies on the distribution pattern and ecological adaptation of Sinopodophyllum hexandrum (Royal) Ying (Berberidaceae). J. Wuhan. Bot. Res. 14:47–54.Google Scholar
  31. Ma, S.-B., Xu, Z.-R., and Hu, Z.-H. (1997). A contribution to the reproductive biology of Sinopodophyllum hexandrum (Royal) Ying (Berberidaceae). Acta Bot. Boreal. Occident. Sin. 17:49–55.Google Scholar
  32. Malone, C. L., Knapp, C. R., Taylor, J. F., and Davis, S. K. (2003). Genetic consequences of Pleistocene fragmentation: Isolation, drift, and loss of diversity in rock iguanas (Cyclura). Conserv. Genet. 4:1–15.CrossRefGoogle Scholar
  33. Miller, M. P. (1997). Tools for Population Genetic Analysis (TEPGA), Version 1.3, Department of Biological Sciences, Northern Arizona University.Google Scholar
  34. Miller, M. P. (1998). AMOVA-PREP 1.01: A Program for the Preparation of AMOVA Input Files From Dominant-Markers Raw Data, Computer software distributed by the author.Google Scholar
  35. Nadeem, M., Palni, L. M. S., Purohit, A. N., Pandey, H., and Nandi, S. K. (2000). Propagation and conservation of Podophyllum hexandrum Royle: An important medicinal herb. Biol. Conserv. 92:121–129.CrossRefGoogle Scholar
  36. Nei, M. (1972). Genetic distance between populations. Am. Nat. 106:283–292.CrossRefGoogle Scholar
  37. Nybom, H., and Bartish, I. V. (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect. Plant Ecol. Evol. Syst. 3:93–114.CrossRefGoogle Scholar
  38. Qiu, Y.-X., Hong, D.-Y., Fu, C.-X., and Cameron, M. (2004). Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae). Biochem. Syst. Ecol. 32:583–596.CrossRefGoogle Scholar
  39. Reed, D. H. (2003). Correlation between fitness and genetic diversity. Conserv. Biol. 17:230–237.CrossRefGoogle Scholar
  40. Rohlf, F. J. (1997). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, ver. 2.02, Exeter Ltd., Setauket, NY.Google Scholar
  41. Sharma, K. D., Singh, B. M., Sharma, T. R., Katoch, M., and Guleria, S. (2000). Molecular analysis of variability in Podophyllum hexandrum Royle, an endangered medicinal herb of northwestern Himalaya. Plant Genet. Resour. Newsl. 124:57–61.Google Scholar
  42. Slatkin, M. (1985). Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16:393–430.CrossRefGoogle Scholar
  43. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.PubMedGoogle Scholar
  44. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535.PubMedGoogle Scholar
  45. Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420.CrossRefGoogle Scholar
  46. Wu, C.-J., Chen, Z.-Q., Huang, X.-Q., Yin, S.-H., Cao, K.-M., and Sun, C.-R. (2004). Genetic diversity among and within populations of Oryza granulata from Yunnan of China revealed by RAPD and ISSR markers: Implications for conservation of the endangered species. Plant Sci. 167:35–42.CrossRefGoogle Scholar
  47. Xu, Z.-Y., Ma, S.-B., Hu, C.-P., Yang, C.-Y., and Hu, Z.-H. (1997). The floral biology and its evolutionary significance of Sinopodophyllum hexandrum (Royle) Ying (Berberidaceae). J. Wuhan Bot. Res. 15:223–227.Google Scholar
  48. Yeh, F. C., Yang, R. C., Boyle, T., Ye, Z. H., and Mao, J. X. (1997). Popgene, the User Friendly Shareware for Population Genetic Analysis, Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Canada.Google Scholar
  49. Yin, M.-L., Chen, Z.-L., and Wang, Q.-Q. (1987). Separation and identification of chemical constituents in Sinopodophyllum emodi Wall. var. chinense Sprague. Chin. Tradit. Herbal Drugs 18:7–10.Google Scholar
  50. Ying, T.-S. (1979). On Dysosma Woodson and Sinopodophyllum Ying, gen. nov. of the Berberidaceae. Acta Phytoxon. Sin. 17:15–23.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Meng Xiao
    • 1
    • 2
  • Qun Li
    • 1
  • Liang Guo
    • 1
  • Tong Luo
    • 1
  • Wen-Xia Duan
    • 1
  • Wen-Xing He
    • 1
  • Li Wang
    • 1
  • Fang Chen
    • 1
  1. 1.College of Life SciencesSichuan UniversityChengduP. R. China
  2. 2.Sichuan Agricultural Management CollegeChengduP. R. China

Personalised recommendations