Biochemical Genetics

, Volume 43, Issue 9–10, pp 471–483 | Cite as

Allozyme Variability and Phylogenetic Relationships in Honey Bee (Hymenoptera: Apidae: Apis mellifera) Populations From Greece and Cyprus

  • M. Bouga
  • G. Kilias
  • P. C. Harizanis
  • V. Papasotiropoulos
  • S. Alahiotis


Ten gene enzymic systems (α-GPDH, AO, MDH, ADH, LAP, SOD, ALP, ACPH, ME, and EST), corresponding to 12 genetic loci, were assayed from five Greek populations representing three subspecies of Apis mellifera, A. m. cecropia (Pthiotida, Kythira), A. m. macedonica (Macedonia), and the “Aegean race” of A. mellifera, which is supposed to be very similar to A. m. adami (Ikaria, Kasos), as well as a population from Cypus (A. m. cypria). ADH-1, ADH-2, and LAP electrophoretic patterns discriminate the Cyprus population from the Greek populations. MDH-1, EST-3, SOD, ALP, and ME loci were found to be polymorphic in almost all populations. The observed heterozygosity was found to range from 0.066 to 0.251. Allele frequencies of all loci were used to estimate Nei's genetic distance, which was found to range between 0.011 and 0.413 among the populations studied. UPGMA and neighbor-joining phylogenetic trees obtained by genetic distance matrix methods, as well as a Wagner tree based on the discrete character parsimony method, support the hypothesis that the most distant population is that from Cyprus. Our allozymic data support A. m. cypria as a distinct subspecies, but there was no allozymic support for the distinction of the other subspecies existing in Greece.


Apis mellifera genetic structure allozymes phylogenetic relationships Greece Cyprus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alahiotis, S. N., and Berger, E. (1977). Isozyme and allozyme patterns in embryonic Drosophila cell culture lines. Biochem. Genet. 15:877–883.CrossRefPubMedGoogle Scholar
  2. Ashton, G. C., and Braden, A. W. H. (1961). Serum β-globulin polymorphism in mice. Austr. J. Exp. Biol. Med. Sci. 14:228.Google Scholar
  3. Avise, J. C. (1994). Molecular Markers, Natural History and Evolution, Chapman and Hall, New York.Google Scholar
  4. Ayala, F. J., Powell, J. R.,. Tracey, M. L., Mourao, C. A., and Perez-Salas, S. (1972). Enzyme variability in the Drosophila willistoni group IV. Genic variation in natural populations of Drosophila willistoni. Genetics 70:113–139.Google Scholar
  5. Badino, G., Celebrano, G., Manino, A., and Ifantidis, M. D. (1988). Allozyme variability in Greek honeybees (Apis mellifera L.). Apidologie 19(4):377–386.Google Scholar
  6. Berlocher, S. H. (1980). An electrophoretic key for distinguishing species of the genus Rhagoletis (Diptera: Tephritidae) as larvae, pupae, or adults. Ann. Entomol. Soc. Am. 73:131–137.Google Scholar
  7. Bernatchez, L., and Osinov, A. (1995). Genetic diversity of trout (genus Salmo) from its most eastern native range based on mitochondrial DNA and nuclear gene variation. Mol. Ecol. 4:285–297.PubMedGoogle Scholar
  8. Bouga, M., Harizanis, P. C., Kilias, G., and Alahiotis, S. (2005). Genetic divergence and phylogenetic relationships of honey bee A. mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR-RFLP analysis of three mtDNA segments. Apidologie 36:335–344.CrossRefGoogle Scholar
  9. Buth, D. G., and Murphy, R. W. (1999). The use of isozyme characters in systematic studies. Biochem. Syst. Ecol. 27:117–129.Google Scholar
  10. Cornuet, J. M. (1979). The MDH system in honeybees of Guadeloup. J. Hered. 70:223–224.Google Scholar
  11. Daly, H. V. (1991). Systematics and identification of Africanized honey bees, In Spivak, M., Fletcher, D. J. C., and Breed, M. D. (eds.), The “African” Honey Bee, Westview Press, Boulder, Colorado, pp. 13–44.Google Scholar
  12. Dedej, S., Basiolo, A., and Piva, R. (1996). Morphometric and alloenzymatic characterisation in the Albanian honeybee population Apis mellifera L. Apidologie 27(3):121–131.Google Scholar
  13. Estoup, A., Garnery, L., Solignac, M., and Cornuet, J. M. (1995). Microsatellite variation in honey bee (Apis mellifera L.) populations: Hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679–695.PubMedGoogle Scholar
  14. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4):783–791.Google Scholar
  15. Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package), Version 3.5C. Distributed by the author, Department of Genetics, University of Washington, Seattle.Google Scholar
  16. Ferguson, M. M., Danzmann, R. G., and Hutchings, J. A. (1991). Incongruent estimates of population differentiation among brook charr, Salvelinus fontinalis, from Cape Race, Newfoundland, Canada, based upon allozyme and mitochondrial DNA variation. J. Fish Biol. 39:79–85.Google Scholar
  17. Ifantidis, M. D. (1979). Morphological characters of the Greek honeybee Apis mellifica cecropia. Proceedings of the 27th Apimondia International Apicultural Congress, Athens, pp. 285–294.Google Scholar
  18. Kandemir, I., Meixner, M. D., and Sheppard, W. S. (2003). Morphometric, allozymic, and mtDNA variation in honeybee (Apis mellifera cypria, Pollman 1879) populations in northern Cyprus. Final Program and Book of Abstracts, 38th Apimondia International Apicultural Congress, p. 798.Google Scholar
  19. Kluge, A. G., and Farris, J. S. (1969). Quantitive phyletics and the evolution of anurans. Syst. Zool. 18:1–32.Google Scholar
  20. Mantel, N. A. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220.PubMedGoogle Scholar
  21. Moritz, C., Dowling, T. E., and Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Ann. Rev. Ecol. Syst. 18:269–292.CrossRefGoogle Scholar
  22. Nei, M. (1972). Genetic distance between populations. Am. Naturalist 106:283–291.CrossRefGoogle Scholar
  23. Nunamaker, R. A., Wilson, W. T., and Haley, B. E. (1984). Electrophoretic detection of Africanized honey bee (Apis mellifera scutellata) in Guatemala and Mexico based on malate dehydrogenase allozyme patterns. J. Kans. Entomol. Soc. 57:622–631.Google Scholar
  24. Page, R. D. M. (1996). TreeView: An application to display phylogenetic trees on personal computers. Comp. Appl. Biosci. 12:357–358.PubMedGoogle Scholar
  25. Papasotiropoulos, V., Klossa-Kilia, E., Kilias, G., and Alahiotis, S. (2001). Genetic divergence and phylogenetic relationships in grey mullets (Teleostei: Mugilidae) using allozyme data. Biochem. Genet. 39:155–168.CrossRefPubMedGoogle Scholar
  26. Poulik, M. D. (1957). Starch gel electrophoresis in a discontinuous system of buffers. Nature 180:1477–1479.PubMedGoogle Scholar
  27. Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43(1):223–225.Google Scholar
  28. Richardson, B. J., Baverstock, P. R., and Adams, M. (1986). Allozyme Electrophoresis. Academic, New York.Google Scholar
  29. Robinson, G. E., and Page, R. E. Jr. (1988). Genetic determination of guarding and undertaking in honey bee colonies. Nature 333:356–358.CrossRefGoogle Scholar
  30. Robinson, G. E., and Page, R. E. Jr. (1989). Genetic determination of nectar foraging, pollen foraging, and nest-site scouting in honey bee colonies. Behav. Ecol. Sociobiol. 24:317–323.CrossRefGoogle Scholar
  31. Robinson, G. E., Page, R. E. Jr., and Fondrk, M. K. (1990). Intracolonial behavioural variation in worker oviposition, oophagy, and larval care in queenless honey bee colonies. Behav. Ecol. Sociobiol. 26:315–323.CrossRefGoogle Scholar
  32. Rohlf, J. (1990). NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, Exeter Software, New York.Google Scholar
  33. Ruttner, F. (1988). Biogeography and Taxonomy of Honeybees, Springer–Verlag, Berlin.Google Scholar
  34. Ruttner, F. (1992). Naturgeschichte der Honigbienen, Ehrenwirth Verlag, Munich, Germany.Google Scholar
  35. Saitou, N., and Nei, M. (1987). The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4):406–425.PubMedGoogle Scholar
  36. Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis of enzymes: A compilation of recipes. Biochem. Genet. 4:297–320.PubMedGoogle Scholar
  37. Schiff, N. M., and Sheppard, W. S. (1995). Genetic analysis of commercial honey bees (Hymenopetera, Apidae) from the southeastern United States. J. Econ. Entomol. 88(5):1216–1220.Google Scholar
  38. Sheppard, W. S. (1988). Comparative study of enzyme polymorphism in United States and European honey bee (Hymenoptera: Apidae) populations. Ann. Entomol. Soc. Am. 81:886–889.Google Scholar
  39. Sheppard, W. S., and Berlocher, S. H. (1989). Allozyme variation and differentiation among four Apis species. Apidologie 20(5):419–431.Google Scholar
  40. Sheppard, W. S., and Huettel, M. D. (1988). Biochemical genetic markers, intraspecific variation, and population genetics of the honey bee. In Needham, G. R., Page Jr., R. E., Delfinado-Baker, M., and Bowman, C. E. (eds.), Africanized Honey Bees and Bee Mites, Ellis-Horwood, Chichester, England, pp. 281–286.Google Scholar
  41. Sheppard, W. S., and McPheron, B. A. (1986). Genetic variation in honeybees from an area of racial hybridization in western Czechoslovakia. Apidologie 17(1):21–23.Google Scholar
  42. Sheppard, W. S., and Meixner, M. D. (2003). Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 34:367–375.CrossRefGoogle Scholar
  43. Sheppard, W. S., and Smith, D. R. (2000). Identification of African-derived bees in the Americas: A survey of methods. Ann. Entomol. Soc. Am. 93:159–176.Google Scholar
  44. Sheppard, W. S., Arias, M. C., Greech, A., and Meixner, M. D. (1997). Apis mellifera ruttneri, a new honey bee subspecies from Malta. Apidologie 28:287–293.Google Scholar
  45. Sneath, P. H. A., and Sokal, R. R. (1973). Numerical Taxonomy: The principle and practice of numerical classification. W. H. Freeman, San Francisco.Google Scholar
  46. Sylvester, H. A. (1982). Electrophoretic identification of Africanized honeybees. J. Apic. Res. 21 (2):93–97.Google Scholar
  47. Sylvester, H. A. (1986). Biochemical Genetics. In Rinderer, T. E. (ed.), Bee Genetics and Breeding, Academic Press, Orlando, FL, pp. 177–203.Google Scholar
  48. Swofford, D. L., and Selander, R. B. (1981). BIOSYS-1: A computer program for the analysis of allelic variation in genetics. Rel. 1.0. Department of Genetics and Development, University of Illinois, Urbana-Champaign.Google Scholar
  49. Visscher, P. K. (1996). Reproductive conflict in honey bees: A stalemate of worker egg-laying and policing. Behav. Ecol. Sociobiol. 39:237–244.CrossRefGoogle Scholar
  50. Wright, S. (1965). The interpretation of population structure by F-Statistics with special regard to systems of mating. Evolution 19:395–420.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • M. Bouga
    • 1
  • G. Kilias
    • 1
  • P. C. Harizanis
    • 2
  • V. Papasotiropoulos
    • 1
  • S. Alahiotis
    • 1
  1. 1.Department of Biology, Division of Genetics, Cell Biology and DevelopmentUniversity of PatrasPatrasGreece
  2. 2.Laboratory of Sericulture-ApicultureAgricultural University of AthensAthensGreece

Personalised recommendations