Advertisement

Biochemical Genetics

, Volume 43, Issue 3–4, pp 87–101 | Cite as

Genetic Variation Within and Among Populations of Rhodiola alsia (Crassulaceae) Native to the Tibetan Plateau as Detected by ISSR Markers

  • Tao Xia
  • Shilong Chen
  • Shengyun Chen
  • Xuejun Ge
Article

Abstract

Genetic variation of 10 Rhodiola alsia (Crassulaceae) populations from the Qinghai–Tibet Plateau of China was investigated using intersimple sequence repeat (ISSR) markers. R. alsia is an endemic species of the Qinghai–Tibet Plateau. Of the 100 primers screened, 13 were highly polymorphic. Using these primers, 140 discernible DNA fragments were generated with 112 (80%) being polymorphic, indicating pronounced genetic variation at the species level. Also there were high levels of polymorphism at the population level with the percentage of polymorphic bands (PPB) ranging from 63.4 to 88.6%. Analysis of molecular variance (AMOVA) showed that the genetic variation was mainly found among populations (70.3%) and variance within populations was 29.7%. The main factors responsible for the high level of differentiation among populations are probably the isolation from other populations and clonal propagation of this species. Occasional sexual reproduction might occur in order to maintain high levels of variation within populations. Environmental conditions could also influence population genetic structure as they occur in severe habitats. The strong genetic differentiation among populations in our study indicates that the conservation of genetic variability in R. alsia requires maintenance of as many populations as possible.

Keywords:

Rhodiola alsia ISSRs genetic variation population structure Qinghai–Tibet Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambruster, W. S., and Schwaegerle, M. J. (1996). Causes of co-variation of phenotypic traits among populations. J. Evol. Biol. 9:261–276.Google Scholar
  2. Balloux, F., and Lugon-Moulin, B. (2002). The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11:155–165.Google Scholar
  3. Barth, S., Melchinger, A. E., and Lubberstedt, T. H. (2002). Genetic diversity in Arabidopsis thaliana L. Heynh. investigated by cleaved amplified polymorphic sequence (CAPS) and inter-simple sequence repeat (ISSR) markers. Mol. Ecol. 11:495–505.Google Scholar
  4. Brauner, S., Crawford, D. J., and Stuessy, T. F. (1992). Ribosomal DNA and RAPD variation in the rare plant family Lactoridaceae. Am. J. Bot. 79:1436–1439.Google Scholar
  5. Camacho, J. C., and Liston, A. (2001). Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeats (ISSR). Am. J. Bot. 88:1065–1070.Google Scholar
  6. Dolan, R. W. (1994). Patterns in isozyme variation in relation to population size, isolation, and phytogeographic history in royal catchfly (silene regia; Caryophyllaceae). Am. J. Bot. 81:965–972.Google Scholar
  7. Donnelly, M. J., and Twonson, H. (2000). Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis eastern Africa. Insect Mol. Biol. 9:357–367.Google Scholar
  8. Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Focus 12:13–15.Google Scholar
  9. Ellstrand, N. C., and Elam, D. R. (1993). Population genetic consequences of small population size: implications for plant conservation. Annu. Rev. Ecol. Syst. 24:217–242.Google Scholar
  10. Erickson, D. L., and Hamrick, J. L. (2003). Genetic and clonal diversity for Myrica cerifera along a spatiotemporal island chronosequence. Heredity 90:25–32.Google Scholar
  11. Esselman, E. J., Li, J. Q., Crawford, D. J., Winduss, J. L., and Wolfe, A. D. (1999). Clonal diversity in the rare Calamagrostis porteri ssp. Insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers. Mol. Ecol. 8:443–451.Google Scholar
  12. Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491.Google Scholar
  13. Fang, D. Q., and Roose, M. L. (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95:408–417.Google Scholar
  14. Fischer, M., and Matthies, D. (1998). RAPD variation in relation to population size and plant performance in the rare Gentianella germanica. Am. J. Bot. 85:811–819.Google Scholar
  15. Fischer, M., Husi, R., Prati, D., Peintinger, M., Kleune, M. V., and Schmid, B. (2000) RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). Am. J. Bot. 87:1128–1137.Google Scholar
  16. Fu, C. X., Qiu, Y. X., and Kong, H. H. (2003). RAPD analysis for genetic diversity in Changium smyrnioides (Apiaceae), an endangered plant. Bot. Bull. Acad. Sin. 44:13–18.Google Scholar
  17. Fu, K. J., and Ohba, H. (2001). Rhodiola (Crassulaceae). In Wu, Z. Y., and Raven, P. (eds.), Flora of China, Vol. 8, Science Press, Beijing, pp. 253–263.Google Scholar
  18. Ge, X. J., and Sun, M. (1999). Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrtinaceae) using allozyme and inter-simple sequence repeat (ISSR) analysis. Mol. Ecol. 8:2061–2069.Google Scholar
  19. Gerlach, G., and Musolf, K. F. (2000). Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv. Biol. 14:1066–1074.Google Scholar
  20. Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58:247–276.Google Scholar
  21. Huff, D. R., Peakall, R., and Smouse, P. E. (1993). RAPD variation within and among natural populations of outcrossing buffalo grass (Buchloe dactyloides (Nutt.) Engelm.). Theor. Appl. Genet. 86:927–934.Google Scholar
  22. Li, A., and Ge, S. (2002). Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers. Ann. Bot. 87:585–590.Google Scholar
  23. Max, K. N., Mouchaty, S. K., and Schwaegerle, K. E. (1999). Allozyme and morphological variation in two subspecies of Dryas octopetala (Rosaceae) in Alaska. Am. J. Bot. 86:1637-1644.Google Scholar
  24. Miehe, G., and Sabine, M. (2000). Environmental Changes in the Pastures of Xizang. Marb. Geo. Sch. 135:282–311.Google Scholar
  25. Milligan, B. G., Leebens-Mack, J., and Strand, A. E. (1994). Conservation genetics: beyond the maintenance of marker diversity. Mol. Ecol. 3:423–435.Google Scholar
  26. Nagaoka, T., and Ogihara, Y. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94:597–602.Google Scholar
  27. Palsson, S. (2000). Microsatellite variation in Daphnia pulex from both side of the Baltic Sea. Mol. Ecol. 9:1075–1088.Google Scholar
  28. Raijmann, L. E. L., Leeuwen, N. C., Kersten, R., Oostermeuer, J. G. B., Den, H. C. M., and Menken, S. B. J. (1994). Genetic variation and outcrossing rate in relation to population size in Gentiana pneumonanthe L. Conserv. Biol. 8:113–126.Google Scholar
  29. Reisch, C., Poschlod, P., and Wingender, R. (2003). Genetic variation of Saxifraga paniculata Mill. (Saxifragaceae): molecular evidence for glacial relic endemism in central Europe. Biol. J. Linn. Soc. 80:11–21.Google Scholar
  30. Rohlf, F. J. (1994). NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Vol. 1.1 80, Exeter Software, New York.Google Scholar
  31. Rossetto, M., Jezierski, G., Hopper, S. D., and Dixon, K. W. (1999). Conservation genetics and clonality in two critically endangered eucalypts from the highly endemic south-western Australian flora. Biol. Conserv. 88:321–331.Google Scholar
  32. Schmid, B. (1984). Niche width and variation within and between population in colonizing species (Carex flava group). Oecologia 63:1–5.Google Scholar
  33. Schmid, B. (1986). Patterns of variation and population structure in the Carex flava group. Sym. Bot. Upsal. 27:113–126.Google Scholar
  34. Shi, Y. F., Li, J. J., and Li, B. Y. (1998). Uplift and Environmental Changes of Qinghai–Tibetan Plateau in the lAte Cenozoic, Gaungdong Science and Technology Press, Guangzhou.Google Scholar
  35. Simberloff, D. (1988). The contribution of population and community biology to conservation science. Annu. Rev. Ecol. Syst. 19:473–512.Google Scholar
  36. Slatkin, M. (1985). Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16:393–430.Google Scholar
  37. Tang, Y., Guang, Z. J., and Zu, Y. G. (2002). Seed dispersal pattern and germination test of Rhodiola sachalinensis. J. Forest. Res. 13:123–126.Google Scholar
  38. Tani, N., Tomaru, N., Tsumura, Y., Araki, M., and Ohba, K. (1998). Genetic structure within a Japanese stone pine (Pinus pumila Regel) population on Mt. Aino-dake in Central Honshu, Japan. J. Plant Res. 111:7–15.Google Scholar
  39. Tiedemann, R., Hardy, O., Vekemans, X., and Milinkovitch, M. C. (2000). Higher impact of female than male migration on population structure in large mammals. Mol. Ecol. 9:1159–1163.Google Scholar
  40. Travis, S. E., Maschinski, J., and Kleim, P. (1996). An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol. Ecol. 5:735–745.Google Scholar
  41. Tsumura, Y., Ohba, K., and Strauss, S. H. (1996). Diversity and inheritance of inter-simple sequence repeat polymorphisms in douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor. Appl. Genet. 9:40–45.Google Scholar
  42. Van Treuren, R., Delden, W., and Ouborg, N. J. (1991). The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189.Google Scholar
  43. Wang, Q., Ge, S., and Hong, D. Y. (2001). Genetic variation within and among populations of a wild rice Oryza granulate from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102:440–449.Google Scholar
  44. Wolfe, A. D., and Liston, A. (1998). Contributions of PCR-based methods to plant systematics and evolutionary biology. In Soltis, D. E., Soltis, P. S., and Doyle, J. J. (eds.), Molecular Systematics of Plants. II. DNA Sequencing, Chapman and Hall, New York, pp. 43–86.Google Scholar
  45. Wu, C. Y. (1987). Preface. In Wu, C. Y. (ed.), Flora of Tibet, Vol. 5, Science Press, Beijing.Google Scholar
  46. Wulff, E. V. (1944). Historical Plant Geography, History of the World Flora, Moscow.Google Scholar
  47. Yan, T. F., Yan, X. F., Zhou, F. J., and Zu, Y. G. (1999a). Research on the distribution and differentiation of RAPD polymorphic fragments for Rhodiola sachalinensis. In Zu, Y. G., Sun, M., and Kang, L. (eds.), The Application, Method and Theory of molecular Ecology, China Higher Education Press, Beijing, pp. 167–176.Google Scholar
  48. Yan, T. F., Yan, X. F., and Zu, Y. G. (1999b). A primarily discuss on the adaptive mechanism at different altitude level of Rhodiola sachalinensis population. Bull. Bot. Res. 19:201–206.Google Scholar
  49. Yeh, F. C., Yang, R. C. B., Timothy, B. J., Ye, Z. H., and Mao, J. X. (1997). POPGENE, the User-Friendly Shareware for Population Genetic Analysis, Molecular Biology and Biotechnology Centre, University of Alberta, Canada.Google Scholar
  50. Young, A., Boyle, T., and Brown, T. (1996). The population genetic consequence of habitat fragmentation for plants. Trends Ecol. Evol. 11:413–418.Google Scholar
  51. Zietkiewicz, E., Rafalski, A., and Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183.Google Scholar
  52. Zu, Y. G., Yan, T. F., and Zhou, F. J. (1998). A preliminary study on genetic variation and endangered mechanism of natural population. Bull. Bot. Res. 18:304–310.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Tao Xia
    • 1
    • 2
  • Shilong Chen
    • 1
  • Shengyun Chen
    • 1
    • 2
  • Xuejun Ge
    • 3
  1. 1.Laboratory of Qinghai–Tibet Biological Evolution and Adaptation, Northwest Plateau Institute of BiologyThe Chinese Academy of SciencesXiningPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.South China Institute of BotanyThe Chinese Academy of SciencesGuangzhouPeople’s Republic of China

Personalised recommendations