Advertisement

Biomedical Engineering

, Volume 53, Issue 4, pp 258–261 | Cite as

An Interferometric Device for Detecting Subgingival Caries

  • E. E. MaiorovEmail author
  • L. I. Shalamai
  • A. V. Dagaev
  • D. I. Kirik
  • M. V. Khokhlova
Article
  • 11 Downloads

We report here studies confirming confirming the potential and relevance of the use of an interferometric device with a temporal coherence-limited radiation source for measurements in therapeutic dentistry. In vivo experimental studies of early subgingival caries in the maxillary and mandibular arches in the left- and right-sided canines were carried out. The distribution of the coefficient of reflection R over the depth of the gingiva with and without early caries was investigated. Experimental results were obtained on the detection of caries in the initial stages with an error of 2.1 μm. A scheme for the interferometric device is presented and the technical characteristics are given: measurement error, 2.1 μm; range of measurement of analysis depth, 0-4 mm; measurement frequency, 46 Hz; mean distance from the microlens to the object, 120 mm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maiorov, E. E., Kotov, I. R., and Khopov, V. V., “Interferometric studies of biological objects,” Nauch.-Tekhnich. Vestn. Inform. Tekhnol. Mekh. Optik., No. 15, 70-72 (2004).Google Scholar
  2. 2.
    Afanas’ev, V. A., Optical Measurements [in Russian], Nedra, Moscow (1968).Google Scholar
  3. 3.
    Gelikonov, V. M, et al., “Optical coherent tomography for microinhomogeneities in biological tissues,” Pis’ma v ZhETF, 61, No. 2, 149-153 (1995).Google Scholar
  4. 4.
    Hausler, G. and Lindner, M. W., “Coherence radar and spectral radar – new tools for dermatological diagnosis,” J. Biomed. Opt., 3, No. 1, 21-31 (1998).CrossRefGoogle Scholar
  5. 5.
    Bol’shakov, O. P., Kotov, I. R., and Khopov, V. V., “A system for measuring the surface relief and elasticity of the skin,” Med. Tekh., No. 5, 35-38 (1997).Google Scholar
  6. 6.
    Majorov, E. E. and Prokopenko, V. T., “A coherence-limited inter-ferometer system for examination of biological objects,” Biomed. Eng., 46, No. 3, 109-111 (2012).CrossRefGoogle Scholar
  7. 7.
    Zakhar’evskii, A. N., Interferometers [in Russian], Oborongiz, Moscow (1952).Google Scholar
  8. 8.
    Maiorov, E. E., Prokopenko, V. T., Udakhina, S. V., Tsygankova, G. A., and Chernyak, T. A., “An optoelectronic computer system for detecting external agents in the subsurface layers of the skin,” Med. Tekh., No. 2, 7-10 (2016).Google Scholar
  9. 9.
    Maiorov, E. E., Prokopenko, V. T., Mashek, A. C., Tsygankova, G. A., Kurlov, A. V., Khokhlova, M. V., Kirik, D. I., and Kapralov, D. D., “Experimental study of metrological characteristics of the automated interferometric system for measuring the surface shape of diffusely reflecting objects,” Measurement Techniques, 60, No. 10, 1016-1021 (2017).CrossRefGoogle Scholar
  10. 10.
    Kreopalova, G. V., Lazareva, N. L., and Puryaev, D. T., Optical Measurements [in Russian], Mashinostroenie, Moscow (1987).Google Scholar
  11. 11.
    Maiorov, E. E., Prokopenko, V. T., and Ushveridze, L. A., “Calculation of the scanning parameters for an interferometric system monitoring the shapes of diffusely reflecting objects,” Pribory, 145, No. 7, 23-25 (2012).Google Scholar
  12. 12.
    Maiorov, E. E. and Prokopenko, V. T., Interferometry of Diffusely Reflecting Objects [in Russian], NIU ITMO, St. Petersburg (2014).Google Scholar
  13. 13.
    Malacara, D., Optical Production Control [Russian translation], Sosnov, A. N. (ed.), Mashinostroenie, Moscow (1985).Google Scholar
  14. 14.
    Maiorov, E. E., Prokopenko, V. T., and Ushveridze, L. A., “A system for the coherent processing of specklegrams for dental tissue surface examination,” Biomed. Eng., 47, No. 6, 304-306 (2014).CrossRefGoogle Scholar
  15. 15.
    Maiorov, E. E., Mashek, A. Ch., Udakhina, S. V., Tsygankova, G. A., Khaidarov, G. G., and Chernyak, T. A., “Development of a omputerized interference system for monitoring uneven surfaces,” Pribory, 185, No. 11, 26-31 (2015).Google Scholar
  16. 16.
    Maiorov, E. E., Prokopenko, V. T., Mashek, A. Ch., Tsygankova, G. A., Kurlov, A. V., Khokhlova, M. V., Kirik, D. I., and Kapralov, D. D., “Experimental studies of the metrological characteristics of an automated interferometric system measuring the surface shapes of diffusely reflecting objects,” Izmer. Tekh., No. 10, 33-37 (2017).Google Scholar
  17. 17.
    Maiorov, E. E., Mashek, A. Ch., Tsygankova, G. A., Polikarpova, A. A., Konstantinova, A. A., and Khokhlova, M. V., “Studies of a Michelson interferometer with a coherence-limited irradiation source for monitoring diffusely reflecting objects,” Izv. TulGU: Tekhn. Nauki, No. 4, 387-397 (2018).Google Scholar
  18. 18.
    Maiorov, E. E., Mashek, A. Ch., Tsygankova, G. A., Abramyan, V. K., Khaidarov, G. G., Khaidarov, A. G., and Konstantinova, A. A., “Analysis of the interference signal of a coherence-limited system for monitoring uneven surfaces,” Izv. YuFU: Tekh. Nauki, No. 2, 221-233 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. E. Maiorov
    • 1
    Email author
  • L. I. Shalamai
    • 2
  • A. V. Dagaev
    • 3
  • D. I. Kirik
    • 4
  • M. V. Khokhlova
    • 5
  1. 1.University of the Interparliamentary Assembly of the EurAsECSt. PetersburgRussia
  2. 2.Pavlov First Saint Petersburg State Medical UniversitySt. PetersburgRussia
  3. 3.St. Petersburg University of Management Technology and EconomicsSt. PetersburgRussia
  4. 4.Bonch-Bruevich Saint-Petersburg State University of TelecommunicationsSt. PetersburgRussia
  5. 5.Mozhaisky Military Space AcademySt. PetersburgRussia

Personalised recommendations