An Endoscopic Optical Coherence Tomography System with Improved Precision of Probe Positioning

  • S. V. FrolovEmail author
  • A. Yu. Potlov

An improved optical coherence tomography system equipped with an endoscopic probe is presented. A key feature of the described device is the possibility of high-precision positioning of the endoscopic probe. This effect is achieved by the use of microelectromechanical systems for assessing the angular velocity and acceleration. The scanning process is optically synchronized with the process of calculation of the spatial coordinates of the endoscopic probe. The expediency of using the developed system for real-time evaluation of the biomechanical properties of blood vessel walls or their phantoms is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gora, M. J., Suter, M. J., Tearney, G. J., and Li, X. “Endoscopic optical coherence tomography: Technologies and clinical applications,” Biomed. Optics Express, 8, No. 5, 2405-2444 (2017).CrossRefGoogle Scholar
  2. 2.
    Adams, D. C., Wang, Y., Hariri, L. P., and Suter, M. J., “Advances in endoscopic optical coherence tomography catheter designs,” IEEE J. Sel. Top. Quantum Electron., 22, No. 3, 210-221 (2016).CrossRefGoogle Scholar
  3. 3.
    Uribe-Patarroyo, N. and Bouma, B. E., “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Optics Letters, 40, No. 23, 5518-5521 (2015).CrossRefGoogle Scholar
  4. 4.
    Tsai, T.-H., Fujimoto, J. G., and Mashimo, H., “Endoscopic Optical Coherence Tomography for Clinical Gastroenterology,” Diagnostics (Basel), 4, No. 2, 57-93 (2014).CrossRefGoogle Scholar
  5. 5.
    Walther, J., Schnabel, C., Tetschke, F., Rosenauer, T., et al., “In vivo imaging in the oral cavity by endoscopic optical coherence tomography,” J. Biomed Opt., 23, No. 7, 1-13 (2018).CrossRefGoogle Scholar
  6. 6.
    Yaqoob, Z., Wu, J., McDowell, E. J., Heng, X., and Yang, C., “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt., 11, No. 6, 063001 (2006).Google Scholar
  7. 7.
    Frolov, S. V., Potlov, A. Yu., Proskurin, S. G., and Sindeev, S. V., “An endoscopic probe for optical coherence tomography,” RF Patent for Utility Model A61M 25/00, A61B 6/00 (2006.01); RU 184084 U1; Byul. No. 29 (2018).Google Scholar
  8. 8.
    Liang, S., Saidi, A., Jing, J., Liu, G, et. al., “Intravascular athero-sclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner,” J. Biomed. Opt., 17, No. 7, 0705011 (2015).Google Scholar
  9. 9.
    Li, X., Yin, J., Hu, C., and Zhou, Q. “High-resolution coregis-tered intravascular imaging with integrated ultrasound and optical coherence tomography probe,” Appl. Phys. Lett., 97, No. 13, 133702 (2010).Google Scholar
  10. 10.
    Collin, J., Davidson, P., Kirkko-Jaakkola, M., and Leppäkoski, H., “Inertial sensors and their applications,” in: Handbook of Signal Processing Systems (2019), pp. 51-85.Google Scholar
  11. 11.
    Bojja, J., Kirkko-Jaakkola, M., Collin, J., and Takala, J., “Indoor localization methods using dead reckoning and 3D map matching,” J. Signal Proc. Syst., 76, 301-312 (2014).CrossRefGoogle Scholar
  12. 12.
    Frolov, S. V., Potlov, A. Yu., and Sindeev, S. V., “Selection of flow-diverter stent models using optical coherence tomography and mathematical modeling of hemodynamics,” Med. Tekh., No. 6, 4-7 (2017).Google Scholar
  13. 13.
    Tsai, T.-H., Potsaid, B., Tao, Y. K., Jayaraman, V., et al., “Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology,” Biomed. Opt. Express, 4, No. 7, 1119-1132 (2013).Google Scholar
  14. 14.
    Pahlevaninezhad, H., Lee, A. M., Hohert, G., Lam, S., et al., “Endoscopic high resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett., 41, No. 14, 3209-3212 (2016).CrossRefGoogle Scholar
  15. 15.
    Frolov, S. V., Sindeev, S. V., Potlov, A. Yu., and Liepsch, D., “Numerical modeling of the effects of a flow-diverting stent on hemodynamic characteristics in a cerebral aneurysm,” Med. Tekh., No. 6, 1-3 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tambov State Technical UniversityTambovRussia

Personalised recommendations