Advertisement

Biomedical Engineering

, Volume 52, Issue 6, pp 407–411 | Cite as

Numerical Modeling of Blood Flows in Rotary Pumps for Use in Pediatric Heart Surgery in Patients Undergoing the Fontan Procedure

  • D. V. TelyshevEmail author
  • M. V. Denisov
  • S. V. Selishchev
Theory and Design
  • 9 Downloads

We present results from the first stage of numerical modeling of implanted rotary blood pumps which can be used in pediatric heart surgery in patients undergoing the Fontan procedure. Two three-dimensional models of pumps − the centrifugal and axial types − were constructed. Head pressure-flow characteristics were obtained for each model and the effects of pump geometry on blood flow at an operating point of 2.5 L/min were evaluated. Stagnation zones were identified by quantitative assessment of the volume of fluid with flow rates of 0-0.1 m/s. The distribution of flow lines was used to identify vortex zones. Numerical modeling of fluid flow in pumps was run in Fluent ANSYS 19.0 computational fluid dynamics software.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Throckmorton, A. L. and Chopski, S. G., “Pediatric circulatory support: Current strategies and future directions. Biventricular and univentricular mechanical assistance,” ASAIO J., 54, No. 5, 491-497 (2008).CrossRefGoogle Scholar
  2. 2.
    Russo, P., Wheeler, A., Russ, J., and Tobias, J. D., “Use of a ventricular assist device as a bridge to transplantation in a patient with single ventricle physiology and total cavopulmonary anastomosis,” Pediatric Anesthesia, 18, No. 4, 320-324 (2008).CrossRefGoogle Scholar
  3. 3.
    Sadeghi, A. M., Marelli, D., Talamo, M., Fazio, D., and Laks, H., “Short-term bridge to transplant using the BVS 5000 in a 22-kg child,” Ann. Thorac. Surg., 70, No. 6, 2151-2153 (2000).CrossRefGoogle Scholar
  4. 4.
    Selishchev, S. V. and Telyshev, D. V., “Ventricular assist device Sputnik: Description, technical features and characteristics,” Trends Biomat. Artif. Org., 29, No. 3, 207-210 (2015).Google Scholar
  5. 5.
    Denisov, M. V., Selishchev, S. V., Telyshev, D. V., and Frolova, E. A., “Development of medical and technical requirements and simulation of the flow-pressure characteristics of the sputnik pediatric rotary blood pump,” Biomed. Eng., 50, No. 5, 296-299 (2017).CrossRefGoogle Scholar
  6. 6.
    D. L. S. Morales et al., “Lessons learned from the first application of the DeBakey VAD Child: An intracorporeal ventricular assist device for children,” J. Heart Lung Transplant., 24, No. 3, 331-337 (2005).CrossRefGoogle Scholar
  7. 7.
    Tanner, K., Sabrine, N., and Wren, C., “Cardiovascular malformations among preterm infants,” Pediatrics, 116, No. 6, 833-838 (2005).CrossRefGoogle Scholar
  8. 8.
    Jayakumar, K. A., Addonizio, L. J., Kichuk-Chrisant, M. R., et al., “Cardiac transplantation after the Fontan or Glenn procedure,” J. Am. Coll. Cardiol., 44, No. 10, 2065-2072 (2004).CrossRefGoogle Scholar
  9. 9.
    Gentles, T. L., Mayer, J. E., Gauvreau, K., et al., “Fontan operation in five hundred consecutive patients: Factors influencing early and late outcome,” J. Thorac. Cardiovasc. Surg., 114, No. 3, 376-391 (1997).CrossRefGoogle Scholar
  10. 10.
    Senzaki, H., Masutani, S., Ishido, H., et al., “Cardiac rest and reserve function in patients with Fontan circulation,” J. Am. Coll. Cardiol., 47, No. 12, 2528-2535 (2006).CrossRefGoogle Scholar
  11. 11.
    Lacour-Gayet, F. G., Lanning, C. J., Stoica, S., Wang, R., Rech, B. A., Goldberg, S., and Shandas, R., “An artificial right ventricle for failing Fontan: In vitro and computational study,” J. Thorac. Cardiovasc. Surg., 88, No. 1, 170-176 (2009).Google Scholar
  12. 12.
    Kutty, S., Li, L., Hasan, R., Peng, Q., Rangamani, S., and Danford, D. A., “Systemic venous diameters, collapsibility indices, and right atrial measurements in normal pediatric subjects,” J. Am. Soc. Echocardiogr., 27, No. 2, 155-162 (2014).CrossRefGoogle Scholar
  13. 13.
    Knobel, Z., Kellenberger, C. J., Kaiser, T., Albisetti, M., Bergsträsser, E., and Buechel, E. R., “Geometry and dimensions of the pulmonary artery bifurcation in children and adolescents: Assessment in vivo by contrast-enhanced MR-angiography,” Int. J. Cardiovasc. Imaging, 27, No. 3, 385-396 (2011).CrossRefGoogle Scholar
  14. 14.
    Salim, M. A., DiSessa, T. G., Arheart, K. L., and Alpert, B. S., “Contribution of superior vena caval flow to total cardiac output in children: A Doppler echocardiographic study,” Circulation, 92, No. 7, 1860-1865 (1995).CrossRefGoogle Scholar
  15. 15.
    Cheng, C. P., Herfkens, R. J., Lightner, A. L., Taylor, C. A., and Feinstein, J. A., “Blood flow conditions in the proximal pulmonary arteries and vena cavae: Healthy children during upright cycling exercise,” Am. J. Physiol. Heart Circ. Physiol., 287, No. 2, 921-926 (2004).CrossRefGoogle Scholar
  16. 16.
    Ovroutski, S., Nordmeyer, S., Miera, O., Ewert, P., Klimes, K., Klimes, T., and Berger, F., “Caval flow reflects Fontan hemodynamics: Quantification by magnetic resonance imaging,” Clin. Res. Cardiol., 101, No. 2, 133-138 (2012).CrossRefGoogle Scholar
  17. 17.
    Cheng, C. P., Herfkens, R. J., Taylor, C. A., and Feinstein, J. A., “Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using MRI: The effects of exercise and age,” J. Magn. Reson. Imaging, 21, No. 6, 752-758 (2005).CrossRefGoogle Scholar
  18. 18.
    Appleton, C. P., Hatle, L. K., and Popp, R. L., “Superior vena cava and hepatic vein Doppler echocardiography in healthy adults,” J. Am. Coll. Cardiol., 10, No. 5, 1032-1039 (1987).CrossRefGoogle Scholar
  19. 19.
    Wexler, L., Bergel, D. H., Gabe, I. T., Makin, G. S., and Mills, C. J., “Velocity of blood flow in normal human venae cavae,” Circ. Res., 23, No. 3, 349-359 (1968).CrossRefGoogle Scholar
  20. 20.
    Kovacs, G., Berghold, A., Scheidl, S., and Olschewski, H., “Pulmonary arterial pressure during rest and exercise in healthy subjects: A systematic review,” Eur. Respir. J., 34, No. 4, 888-894 (2009).CrossRefGoogle Scholar
  21. 21.
    Rowe, R. D. and James, L. S., “The normal pulmonary arterial pressure during the first year of life,” J. Pediatr., 51, No. 1, 1-4 (1957).CrossRefGoogle Scholar
  22. 22.
    Fowler, N. O., Westcott, R. N., and Scott, R. C., “Normal pressure in the right heart and pulmonary artery,” Am. Heart J., 46, No. 2, 264-267 (1953).CrossRefGoogle Scholar
  23. 23.
    Lakatta, E. G., Mitchell, J. H., Pomerance, A., and Rowe, G. G., “Human aging: Changes in structure and function,” J. Am. Coll. Cardiol., 10, No. 2, 42-47 (1987).CrossRefGoogle Scholar
  24. 24.
    Telyshev, D. V., Denisov, M. V., and Selishchev, S. V., “The effect of rotor geometry on the H−Q curves of the Sputnik implantable pediatric rotary blood pump,” Biomed. Eng., 50, No. 6, 420-424 (2017).CrossRefGoogle Scholar
  25. 25.
    Telyshev, D. V., Denisov, M. V., Pugovkin, A., Selishchev, S. V., and Nesterenko, I. V., “The progress in the novel pediatric rotary blood pump Sputnik development,” Artif. Organs, 42, No. 4, 432-443 (2018).CrossRefGoogle Scholar
  26. 26.
    Moazami, N., Fukamachi, K., Kobayashi, M., Smedira, N. G., Hoercher, K. J., Massiello, A., Lee, S., Horvath, D. J., and Starling, R. C., “Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice,” J. Heart Lung Transplant., 32, No. 1, 1-11 (2013).CrossRefGoogle Scholar
  27. 27.
    Chiu, W. C., Slepian, M. J., and Bluestein, D., “Thrombus formation patterns in the HeartMate II ventricular assist device: Clinical observations can be predicted by numerical simulations,” ASAIO J., 60, No. 2, 237-240 (2014).CrossRefGoogle Scholar
  28. 28.
    Fraser, K. H., Zhang, T., Taskin, M. E., et al., “A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: Shear stress, exposure time and hemolysis index,” J. Biomed. Eng., 134, No. 8 (2012).Google Scholar
  29. 29.
    Thamsen, B., Blümel, B., Schaller, J., et al., “Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps,” Artif. Org., 39, No. 8, 651-659 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. V. Telyshev
    • 1
    • 2
    Email author
  • M. V. Denisov
    • 1
  • S. V. Selishchev
    • 1
  1. 1.Institute of Biomedical SystemsNational Research University of Electronic Technology (MIET)ZelenogradRussia
  2. 2.Institute for Bionic Technologies and EngineeringI. M. Sechenov First Moscow State Medical University, Russian Ministry of HealthMoscowRussia

Personalised recommendations