Advertisement

Biomedical Engineering

, Volume 52, Issue 6, pp 371–378 | Cite as

Scientific Grounds for the Design of Electrical Impedance Systems for Monitoring the Parameters of Central Hemodynamics and Respiration

  • I. K. SergeevEmail author
Article
  • 4 Downloads

Among the instrumented methods for assessing the volume characteristics of cardiac activity, ultrasound, MRI, and CT with contrast are well known. Conventional methods do not provide for measurement of the parameters of central hemodynamics and respiration in monitoring conditions. The possibility of multichannel electrical impedance technology allows the stroke volume and fractional output of the heart to be determined and the displacement of the ventricular walls to be visualized in real time with an accuracy no worse than 1-2 mm. This article considers questions of the implementation of techniques for computing stroke and minute volumes of the circulation and displacements of the heart chamber by solving the electrical impedance measurement problem. Results of mathematical and physical modeling of cardiac activity based on precordial measurements are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Pushcarr, U. T., “Precordial rheocardiography and its clinical value,” Terap. Arkh., No. 9, 57-62 (1959).Google Scholar
  3. 3.
    Pushcarr, U. T., “Pulmonary, aortic and precordial rheography in heart insufficiency and in patients with pulmonary arterial hypertension,” Am. Heart J., 1, 34-38 (1961).Google Scholar
  4. 4.
    Pekker, Ya. S., Brazovskii K. S., and Usov, V. N., Electrical Impedance Tomography [in Russian], NTL, Tomsk (2004).Google Scholar
  5. 5.
    Korzhenevskii, A. V., Kornienko, V. N., and Kul’tiasov, M. Yu., “Electrical impedance computerized tomography for medical applications,” PTE, No. 3, 133-140 (1997).Google Scholar
  6. 6.
    Shchukin, S. I., Zubenko, V. G., Belyaev, K. R., and Morozov, A. A., “Rheocardiomonitoring systems,” Biomed. Radioelektr., No. 3, 46-60 (1999).Google Scholar
  7. 7.
    Sergeev, I. K., Safonova, L. P., and Shchukin, S. I., “A system and technology for multichannel impedance mapping of the biomechanical activity of the heart,” Biomed. Radioel., No. 10, 4-14 (2010).Google Scholar
  8. 8.
    Gurevich, M. I. et al., Impedance Rheoplethysmography [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  9. 9.
    Nguyen, D. T., Jin, C., Thiagalingam, A., and McEwan, A. L., “A review on electrical impedance tomography for pulmonary perfusion imaging,” Physiol. Meas., 33, No. 5, 695-706 (2012).CrossRefGoogle Scholar
  10. 10.
    Pikkemaat, R., Tenbrock, K., Lehmann, S., and Leonhardt, S., “Electrical impedance tomography: New diagnostic possibilities using regional time constant maps,” Appl. Cardiopulm. Pathophysiol., 16, 212-225 (2012).Google Scholar
  11. 11.
    Korzhenevskii, A. V., Karpov, A. Yu., Kornienko, V. N., Kul’tiasov, Yu. S., and Cherepenin, V. A., “An electrical impedance tomography system for three-dimensional visualization of breast tissue,” Biomed. Tekhnol. Radioel., No. 8, 5-10 (2003).Google Scholar
  12. 12.
    Adey, W. R., Kado, R. T., and Didio, J., “Impedance measurements in brain tissue of animals using microvolt signals,” Exp. Neurol., 5, 47-66 (1962).CrossRefGoogle Scholar
  13. 13.
    Brown, B. H., Barber, D. C., and Seagar, A. D., “Applied potential tomography: Possible clinical applications,” Clin. Phys. Physiol. Meas., 1, 109-121 (1985).CrossRefGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
    Henderson, R. P. and Webster, J. G., “An impedance camera for spatially specific measurements of the thorax”, IEEE Trans. Biomed. Eng., 25, 250-254 (1978).CrossRefGoogle Scholar
  17. 17.
    Brown, B. H. and Barber, D. C., “Applied potential tomography (review article),” J. Phys. E: Sci. Instrum., 17, 723-733 (1984).CrossRefGoogle Scholar
  18. 18.
    Kirpichenko, Yu. E., Timokhin, D. P., and Shchukin, S. I., “Assessment of stroke volume and fractional output by electrical impedance mapping of the heart,” Biomed. Radioelektr., No. 1, 48-51 (2013).Google Scholar
  19. 19.
    Tikhomirov, A. N., Malakhov, A. I., Shchukin, S. I., Kobelev, A. V., Kudashov, I. A., Maslennikov, M. A., and Petrov, V. I., “Assessment of the effects of specific electrical resistance of the tissues of the upper layer on impedance measurements,” Biomed. Radioel., No. 1, 20-24 (2013).Google Scholar
  20. 20.
    Zolotko, Yu. L., Atlas of Human Topographic Anatomy [in Russian], Meditsina, Moscow (1967).Google Scholar
  21. 21.
    Tikhonov, A. N. and Samarskii, A. A., Equations for Mathematical Physics [in Russian], Vysshaya Shkola, Moscow (1994).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Russian Scientific and Research Institute for Medical EngineeringFederal Service for Surveillance in HealthcareMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations