Skip to main content
Log in

Biological control of strawberry grey mold disease caused by Botrytis cinerea mediated by Colletotrichum acutatum extracts

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Despite the negative impact on human, animal and environmental health, synthetic fungicides are the most common agrochemicals used to control Botrytis cinerea, the causal agent of grey mold disease. Strawberry plants are very susceptible to many pathogens, especially the necrotrophic fungus B. cinerea. In this work, we show that two fungal extracts obtained from a local isolate of Colletotrichum acutatum (M11) can protect strawberry plants against grey mold. Fungal culture filtrate (CF), and the axenic semi-purified culture filtrate (ACF) induce local and systemic acquired resistance against B. cinerea, and reduce fungal virulence. These results suggest that CF and ACF can be used as effective ingredients of bioproducts to control grey mold in strawberry crop. We also show that the elicitor peptide flg22 is effective to confer strawberry plants local and systemic protection against B. cinerea but only when applied 24 h prior to the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FEs:

Fungal extracts

CF:

Culture filtrate

ACF:

Axenic culture filtrate

SAR:

Systemic acquired resistance

LAR:

Local acquired resistance

hpti:

Hours prior to infection

dpi:

Days post-infection

hpt:

Hours post-treatment

FW:

Fresh weight

References

  • Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL (2011) The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol 52:1873–1903

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  • Chalfoun NR, Grellet-Bournonville CF, Martínez-Zamora MG, Díaz-Perales A, Castagnaro AP, Díaz-Ricci JC (2013) Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor. J Biol Chem 288:14098–14113

    Article  CAS  Google Scholar 

  • Chalfoun NR, Durman SB, Budeguer F, Caro MP, Bertani RP, Di Peto P, Stenglein SA, Filippone MP, Moretti ER, Díaz-Ricci JC, Welin B, Castagnaro AP (2018a) Development of PSP1, a biostimulant based on the elicitor AsES for disease management in monocot and dicot crops. Front Plant Sci 9:844

    Article  Google Scholar 

  • Chalfoun NR, Durman SB, González-Montaner J, Reznikov S, De Lisi V, González V, Moretti ER, Devani MR, Ploper LD, Castagnaro AP, Welin B (2018b) Elicitor-based biostimulant PSP1 protects soybean against late season diseases in field trials. Front Plant Sci 9:763

    Article  Google Scholar 

  • Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393

    Article  CAS  Google Scholar 

  • Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  Google Scholar 

  • Di Rienzo JA (2009) fgStatistics: statistical software for the analysis of experiments of functional genomics. Argentina. OS 756587. https://sites.google.com/site/fgStatistics/

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. https://www.infostat.com.ar

  • Elad Y, Pertot I, Cotes-Prado AM, Stewart A (2016) Plant hosts of Botrytis spp. In: Fillinger S, Elad Y (eds) Botrytis—the fungus, the pathogen and its management in agricultural systems, 1st edn. Springer, Switzerland, pp 413–486

    Chapter  Google Scholar 

  • Elias JM, Guerrero-Molina MF, Martínez-Zamora MG, Díaz-Ricci JC, Pedraza RO (2018) Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Plant Biol 20:490–496

    Article  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  CAS  Google Scholar 

  • Graham MY, Weidner J, Wheeler K, Pelow MJ, Graham TL (2003) Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. Physiol Mol Plant P 63:141–149

    Article  CAS  Google Scholar 

  • Guerrero-Molina MF, Lovaisa NC, Salazar SM, Martínez-Zamora MG, Díaz-Ricci JC, Pedraza RO (2015) Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3. Plant Biol 17:766–773

    Article  CAS  Google Scholar 

  • Hael-Conrad V, Abou-Mansour E, Díaz-Ricci JC, Métraux JP, Serrano M (2015) The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana. Plant Sci 241:120–127

    Article  CAS  Google Scholar 

  • Hael-Conrad V, Perato SM, Arias ME, Martínez-Zamora MG, Di Peto P, Martos GG, Castagnaro AP, Díaz-Ricci JC, Chalfoun NR (2018) The elicitor protein AsES induces a systemic acquired resistance response accompanied by systemic microbursts and micro-hypersensitive responses in Fragaria ananassa. Mol Plant Microbe Interact 31:46–60

    Article  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  Google Scholar 

  • Kårlund A, Salminen JP, Koskinen P, Ahern JR, Karonen M, Tiilikkala K, Karjalainen RO (2014) Polyphenols in strawberry (Fragaria × ananassa) leaves induced by plant activators. J Agric Food Chem 62:4592–4600

    Article  Google Scholar 

  • Kirschbaum DS, Vicente CE, Cano-Torres MA, Gambardella M, Veizaga-Pinto FK, Antunes LEC (2017) Strawberry in South America: from the Caribbean to Patagonia. Acta Hortic 1156:947–956

    Article  Google Scholar 

  • Martinez-Zamora MG, Grellet-Bournonville C, Castagnaro AP, Díaz-Ricci JC (2012) Identification and characterization of a novel class I endo-β-1,3-glucanase regulated by salicylic acid, ethylene and fungal pathogens in strawberry. Funct Plant Biol 39:412–420

    Article  Google Scholar 

  • Mazaro SM, Deschamps C, May De Mio LL, Biasi LA, De Gouvea A, Kaehler-Sautter C (2008) Post harvest behaviour of strawberry fruits after pre harvest treatment with chitosan and acibenzolar-s-methyl. Rev Bras Frutic 30:185–190

    Article  Google Scholar 

  • McLusky SR, Bennett MH, Beale MH, Lewis MJ, Gaskin P, Mansfield JW (1999) Cell wall alterations and localized accumulation of feruloyl-3'-methoxytramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis. Plant J 17:523–534

    Article  CAS  Google Scholar 

  • Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560

    Article  CAS  Google Scholar 

  • Petrasch S, Knapp SJ, van Kan JAL, Blanco-Ulate B (2019) Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol Plant Pathol 20:877–892

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  Google Scholar 

  • Remakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  Google Scholar 

  • Salazar SM, Castagnaro AP, Arias ME, Chalfoun N, Tonello U, Díaz-Ricci JC (2007) Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur J Plant Pathol 117:109–122

    Article  Google Scholar 

  • Segal LM, Wilson RA (2017) Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genet Biol 110:1–9

    Article  Google Scholar 

  • Talamond P, Verdeil JL, Conéjéro G (2015) Secondary metabolite localization by autofluorescence in living plant cells. Molecules 20:5024–5037

    Article  CAS  Google Scholar 

  • Tomas-Grau RH, Requena-Serra FJ, Hael-Conrad V, Martínez-Zamora MG, Guerrero-Molina MF, Díaz-Ricci JC (2018) Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry. Plant Cell Rep 37:239–250

    Article  CAS  Google Scholar 

  • Tomas-Grau RH, Di Peto P, Chalfoun NR, Grellet-Bournonville CF, Martos GG, Debes M, Arias ME, Díaz-Ricci JC (2019) Colletotrichum acutatum M11 can suppress the defence response in strawberry plants. Planta 250:1131–1145

    Article  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Ann Rev Phytopathol 44(1):135–162

    Article  CAS  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428(6984):764–767

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Strawberry Active Germplasm Bank (BGA) from Universidad Nacional de Tucuman (UNT), Cecilia Lemme, for providing strawberry plants, and Debes M for technical assistance. RHTG, VHC, FJRS, MP and MdPC are CONICET fellowships, and SMS and JCDR are members of CONICET.

Funding

This study was funded by grants of the Universidad Nacional de Tucumán (PIUNT 26/D642), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2017-0653), and CONICET (PUE-2016-0104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Díaz-Ricci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Jesus Mercado Blanco.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomas-Grau, R.H., Hael-Conrad, V., Requena-Serra, F.J. et al. Biological control of strawberry grey mold disease caused by Botrytis cinerea mediated by Colletotrichum acutatum extracts. BioControl 65, 461–473 (2020). https://doi.org/10.1007/s10526-020-10003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-020-10003-4

Keywords

Navigation