Advertisement

BioControl

pp 1–11 | Cite as

The establishment of a rearing technique for the fruit fly parasitoid Baryscapus silvestrii increases knowledge of biological, ecological and behavioural traits

  • R. Sasso
  • L. Gualtieri
  • E. Russo
  • F. Nugnes
  • M. Gebiola
  • U. BernardoEmail author
Article

Abstract

We have evaluated different rearing strategies of Baryscapus silvestrii (Hymenoptera: Eulophidae), a parasitoid of Bactrocera oleae (Diptera: Tephritidae), including the use of a factitious host, Ceratitis capitata (Diptera: Tephritidae), and in the process acquired new knowledge of the parasitoid’s biology. We found that B. silvestrii: (1) parasitizes only puparia and exclusively if they are concealed, (2) is able to parasitize and complete its development on puparia of all ages, (3) prefers to oviposit on the medfly in choice tests, (4) completes development faster if reared on 2–3 day-old puparia, (5) exhibits sex allocation related to host puparium age. This study provides critical information on several biological traits of B. silvestrii, and the new rearing method can be used to establish a parasitoid rearing for augmentative releases.

Keywords

Biological control Bactrocera oleae Ceratitis capitata Eulophidae Sex allocation 

Notes

Acknowledgements

The authors thank Elisa Troiano, Marco Tiseo, and Pasquale De Stefano for their precious technical help in a preliminary part of tests, Michele Innangi for statistical help, and Anna Giulia Nappo and Lorenzo Marrazzo for their precious technical help. This research was partly supported by the Campania Region funded URcOFi project (Unità Regionale Coordinamento Fitosanitario).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Bernardo U, Guerrieri E (2011) Controllo eco-sostenibile della mosca dell’olivo: recenti acquisizioni. Acta Italus Hortus 1:351–354Google Scholar
  2. Bigler F, Neuenschwander P, Delucchi V, Michelakis S (1986) Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt., Tephritidae) in Western Crete II. Impact on olive fly populations. Boll Lab Entomol Agrar F Silvestri 43:79–96Google Scholar
  3. Boulton RA, Collins LA, Shuker DM (2015) Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps. Biol Rev Camb Philos Soc 90:599–627CrossRefGoogle Scholar
  4. Caleca V, Antista G, Campisi G, Caruso T, Lo Verde G, Maltese M, Rizzo R, Planeta D (2017) High quality extra virgin olive oil from olives attacked by the olive fruit fly, Bactrocera oleae (Rossi) (Diptera Tephritidae): which is the tolerable limit? Data from experimental ‘Nocellara del Belice’ and ‘Cerasuola’ olive groves in Sicily. Chem Eng Trans 58:451–456Google Scholar
  5. Charnov EL, Los-den Hartogh RL, Jones WT, van den Assem J (1981) Sex ratio evolution in a variable environment. Nature 289:27–33CrossRefGoogle Scholar
  6. Cook JM, Compton SG, Herre EA, West SA (1997) Alternative mating tactics and extreme male dimorphism in fig wasps. R Soc B 264:747–754CrossRefGoogle Scholar
  7. Daane K, Johnson M (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:155–169CrossRefGoogle Scholar
  8. Daane KM, Wang X, Nieto DJ, Pickett CH, Hoelmer KA, Blanchet A, Johnson MW (2015) Classic biological control of olive fruit fly in California, USA: release and recovery of introduced parasitoids. BioControl 60:317–330CrossRefGoogle Scholar
  9. Davis JM, Stamps JA (2004) The effect of natal experience on habitat preferences. Trends Ecol Evol 19:411–416CrossRefGoogle Scholar
  10. de Almeida RP, Stouthamer R (2003) Molecular identification of Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae): a new record for Peru. Neotrop Entomol 32:269–272CrossRefGoogle Scholar
  11. Ekesi S, De Meyer M, Mohamed SA, Virgilio M, Borgemeister C (2016) Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu Rev Entomol 61:219–238CrossRefGoogle Scholar
  12. Gucci R, Caruso G, Canale A, Loni A, Raspi A, Urbani S, Taticchi A, Esposto S, Servili M (2012) Qualitative changes of olive oils obtained from fruits damaged by Bactrocera oleae (Rossi). HortScience 47:301–306CrossRefGoogle Scholar
  13. Harris EJ, Bautista RC, Vargas RI, Jang EB, Eitam A, Leblanc L (2010) Suppression of melon fly (Diptera: Tephritidae) populations with releases of Fopius arisanus and Psyttalia fletcheri (Hymenoptera: Braconidae) in North Shore Oahu, HI, USA. BioControl 55:593–599CrossRefGoogle Scholar
  14. Headrick DH, Goeden RD (1996) Issues concerning the eradication or establishment and biological control of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in California. Biol Control 6:412–421CrossRefGoogle Scholar
  15. Heimpel GE, Lundgren JG (2000) Sex ratios of commercially reared biological control agents. Biol Control 19:77–93CrossRefGoogle Scholar
  16. Hoelmer KA, Kirk AA, Pickett CH, Daane KM, Johnson MW (2011) Prospects for improving biological control of olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), with introduced parasitoids (Hymenoptera). Biocontrol Sci Technol 21:1005–1025CrossRefGoogle Scholar
  17. Holt R, Lawton J (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520CrossRefGoogle Scholar
  18. Jackson CG, Long JP, Klungness LM (2008) Depth of pupation in four species of fruit flies (Diptera: Tephritidae) in sand with and without moisture. J Econ Entomol 91:138–142CrossRefGoogle Scholar
  19. Johnson MW, Daane KM, Wang X-G, Yokoyama V, Pickett CH, Hoelmer KA, Kirk AA (2012) Biological control of olive fruit fly. Integr Prot Olive Crops IOBC/WPRS Bull 79:63–69Google Scholar
  20. Jones TW (1982) Sex ratio and host size in parasitoid wasp. Behav Ecol Sociobiol 10:207–210CrossRefGoogle Scholar
  21. Kenneth W, Hardy ICW (2002) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (ed) Sex ratios concepts and research methods. Cambridge University Press, Cambridge, pp. 48–92Google Scholar
  22. King BH (1988) Sex ratio manipulation in response to host size by the parasitoid wasp Spalangia cameroni: a laboratory study. Evolution 42:1190–1198PubMedGoogle Scholar
  23. Liquido NJ, Shinoda LA, Cunningham RT (1991) Host plants of the Mediterranean fruit fly (Diptera: Tephritidae): an annotated world review. Misc Publ Entomol Soc Am 77:1–52Google Scholar
  24. Malheiro R, Casal S, Baptista P, Pereira JA (2015) A review of Bactrocera oleae (Rossi) impact in olive products: from the tree to the table. Trends Food Sci Technol 44:226–242CrossRefGoogle Scholar
  25. Martín-Vega D, Hall MJR, Simonsen TJ (2016) Resolving confusion in the use of concepts and terminology in intrapuparial development studies of Cyclorrhaphous Diptera. J Med Entomol 53:1249–1251CrossRefGoogle Scholar
  26. Napoleon ME, King BH (1999) Offspring sex ratio response to host size in the parasitoid wasp Spalangia endius. Behav Ecol Sociobiol 46:325–332CrossRefGoogle Scholar
  27. Nugnes F, Bernardo U, Viggiani G (2017) An integrative approach to species discrimination in the Anagrus atomus group sensu stricto (Hymenoptera: Mymaridae), with a description of a new species. Syst Biodivers 15:582–599CrossRefGoogle Scholar
  28. Nugnes F, Russo E, Viggiani G, Bernardo U (2018) First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9:182CrossRefGoogle Scholar
  29. Pašková M (2007) New larval agar-based diet for laboratory rearing of Mediterranean fruit fly Ceratitis capitata (Diptera, Tephritidae). Biol Bratisl 62:477–481CrossRefGoogle Scholar
  30. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. http://www.r-project.org
  31. Rice RE, Phillips PA, Stewart-Leslie J, Sibbett GS (2003) Olive fruit fly populations measured in central and southern California. Calif Agric 57:122–127CrossRefGoogle Scholar
  32. Shelly T, Epsky N, Jang EB, Reyes-Flores J, Vargas R (2014) Trapping and the detection, control, and regulation of tephritid fruit flies. Springer, New YorkCrossRefGoogle Scholar
  33. Silvestri F (1913) Viaggio in Africa per cercare parassiti di mosche dei frutti. Boll Lab Zool Gen Agrar R Portici 8:3–164Google Scholar
  34. Silvestri F (1915) Descrizione di nuovi imenotteri Calcididi africani. Boll Lab Zool Gen Agrar Portici 9:337–377Google Scholar
  35. Statgraphics plus version 3.0. (1997) Rockville (MD): ManugisticsGoogle Scholar
  36. Storck V, Karpouzas DG, Martin-Laurent F (2017) Science of the total environment. Sci Total Environ 575:1027–1033CrossRefGoogle Scholar
  37. Szyniszewska AM, Tatem AJ (2014) Global assessment of seasonal potential distribution of Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). PLoS ONE 9(11):e111582CrossRefGoogle Scholar
  38. Viggiani G, Bernardo U, Sasso R (2007) Description of Baryscapus silvestrii, n. sp. (Hymenoptera: Eulophidae), a new gregarious parasitoid of the olive fly Bactrocera oleae (Gmelin) (Diptera: Tephritidae) in southern Italy. Boll Lab Ent Agrar F Silvestri 61:63–70Google Scholar
  39. Vinson S (1976) Host selection by insect parasitoids. Annu Rev Entomol 21:109–133CrossRefGoogle Scholar
  40. Zucchi RA (2001) Mosca-do-Mediterrâneo, Ceratitis capitata (Diptera, Tephritidae). In: Vilela EF, Zucchi RA, Cantor F (eds) Histórico e impacto das pragas introduzidas no Brasil. Holos, Ribeirão Preto, pp 15–22Google Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2019

Authors and Affiliations

  1. 1.ENEA C.R. Casaccia, Laboratory SSPT-BIOAG-SOQUASRomeItaly
  2. 2.CNR, Institute for Sustainable Plant Protection, ss of PorticiPorticiItaly
  3. 3.Department of EntomologyUniversity of CaliforniaRiversideUSA

Personalised recommendations