Advertisement

BioControl

pp 1–13 | Cite as

Life history of Vrestovia fidenas, a potential control agent of Drosophila suzukii

  • Sarah Wolf
  • Hannes Baur
  • Jana CollatzEmail author
Article
  • 32 Downloads

Abstract

Vrestovia fidenas (Walker) (Hymenoptera: Pteromalidae) is a pupal parasitoid of Drosophila spp. native to Europe and could be useful for the biological control of the invasive spotted-wing Drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). We assessed life-table parameters (fecundity and longevity of adults, and weight and developmental time of offspring) of V. fidenas on two hosts: D. suzukii and the common native vinegar fly, Drosophila subobscura Collin (Diptera: Drosophilidae). Drosophila suzukii was determined to be a suitable host for V. fidenas and a better host than D. subobscura, i.e., V. fidenas produced more offspring and developed more rapidly on D. suzukii than on D. subobscura. The results indicate that V. fidenas should be further assessed for the biological control of D. suzukii. In addition, morphological analysis demonstrated that a second species of the genus Vrestovia, V. brevior, is also present in Europe. We present an identification key to the most common pteromalid pupal parasitoids of Drosophila, including both species of Vrestovia.

Keywords

Trichopria Spalangia Pachycrepoideus Vrestovia brevior Drosophila melanogaster Switzerland Europe New record 

Notes

Acknowledgements

This research project was funded by the Drosophila suzukii R & G Task Force (funded by the Swiss Federal Office for Agriculture FOAG). We thank Gary Gibson of the Canadian National Collection of Insects for loaning us specimens of Vrestovia brevior. We also thank Valeria Trivellone, Corrado Cara and Michela Meier for giving their specimens of Vrestovia brevior they collected in 2017. And thanks to Jörg Romeis and three anonymus reviewers for their valuable comments on earlier versions of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10526_2019_9933_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang ZL, Karpati Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vetek G, Vogt H, Walton VM, Yu Y, Zappala L, Desneux N (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494CrossRefGoogle Scholar
  2. Bächli G (2018) TaxoDros: The database on taxonomy of Drosophilidae http://www.taxodros.uzh.ch. Accessed 1 Jan 2018
  3. Bächli G, Burla H (1985) Insecta Helvetica Bd. 7: Diptera—Drosophilidae. Schweizerische Entomologische GesellschaftGoogle Scholar
  4. Baur H (2015) Pushing the limits—two new species of Pteromalus (Hymenoptera, Chalcidoidea, Pteromalidae) from Central Europe with remarkable morphology. ZooKeys 514:43–72CrossRefGoogle Scholar
  5. Bigler F, Bale JS, Cock MJW, Dreyer H, Greatrex R, Kuhlmann U, Loomans AJM, van Lenteren JC (2005) Guidelines on information requirements for import and release of invertebrate biological control agents in European countries. Biocontrol News Inf 26:N115–N123Google Scholar
  6. Bouček Z (1965) Synonymic and taxonomic notes on some Chalcidoidea (Hymenoptera), with corrections of my own mistakes. Acta Entomol Mus Natl Pragae 36:543–554Google Scholar
  7. Bouček Z (1993) New taxa of North American Pteromalidae and Tetracampidae (Hymenoptera), with notes. J Nat Hist 27:1239–1313CrossRefGoogle Scholar
  8. Burton-Chellew MN, Sykes EM, Patterson S, Shuker DM, West SA (2007) The cost of mating and the relationship between body size and fitness in males of the parasitoid wasp Nasonia vitripennis. Evol Ecol Res 9:921–934Google Scholar
  9. Chabert S, Allemand R, Poyet M, Eslin P, Gibert P (2012) Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol Control 63:40–47CrossRefGoogle Scholar
  10. Collatz J, Hagenbucher S, Wyss U (2019) Drosophila suzukii and native European parasitoids. Movie retrievable at: https://www.youtube.com/watch?v=xHKtbTQFAFs&feature=youtu.be
  11. Cuthbertson AGS, Blackburn LF, Audsley N (2014) Efficacy of commercially available invertebrate predators against Drosophila suzukii. Insects 5:952–960CrossRefGoogle Scholar
  12. Eslin P, Doury G (2006) The fly Drosophila subobscura: a natural case of innate immunity deficiency. Dev Comp Immunol 30:977–983CrossRefGoogle Scholar
  13. Freitak D, Ots I, Vanatoa A, Hõrak P (2003) Immune response is energetically costly in white cabbage butterfly pupae. Proc R Soc B Biol Sci 270:S220–S222CrossRefGoogle Scholar
  14. Gabarra R, Riudavets J, Rodríguez GA, Pujade-Villar J, Arnó J (2015) Prospects for the biological control of Drosophila suzukii. BioControl 60:331–339CrossRefGoogle Scholar
  15. Harvey JA (2005) Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomol Exp Appl 17:1–13CrossRefGoogle Scholar
  16. Havard S, Eslin P, Prévost G, Doury G (2009) Encapsulation ability: are all Drosophila species equally armed? An investigation in the obscura group. Can J Zool 87:635–641CrossRefGoogle Scholar
  17. Honěk A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492CrossRefGoogle Scholar
  18. Jervis MA, Heimpel GE, Ferns PN, Harvey JA, Kidd NAC (2001) Life-history strategies in parasitoid wasps: a comparative analysis of ‘ovigeny’. J Anim Ecol 70:442–458CrossRefGoogle Scholar
  19. Kaçar G, Wang X-G, Biondi A, Daane KM (2017) Linear functional response by two pupal Drosophila parasitoids foraging within single or multiple patch environments. PLoS ONE 12(8):e0183525CrossRefGoogle Scholar
  20. Kamijo K (1983) Pteromalidae (Hymenoptera) from Korea, with description of four new species. Ann Hist Nat Mus Natl Hung 75:295–311Google Scholar
  21. Knoll V, Ellenbroek T, Romeis J, Collatz J (2017) Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii. Sci Rep UK 7:40697CrossRefGoogle Scholar
  22. Kremmer L, Thaon M, Borowiec N, David J, Poirié M, Gatti J-L, Ris N (2017) Field monitoring of Drosophila suzukii and associated communities in South Eastern France as a pre-requisite for classical biological control. Insects 8:124CrossRefGoogle Scholar
  23. Kruitwagen A, Beukeboom LW, Wertheim B (2018) Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evol Appl 11:1473–1497CrossRefGoogle Scholar
  24. Mackauer M, Sequeira R, Otto M (1997) Growth and development in parasitoid wasps: adaptation to variable host resources. In: Dettner K, Bauer G, Völkl W (eds) Vertical food web interactions, vol 130. Ecological studies. Springer, Berlin, pp 191–204CrossRefGoogle Scholar
  25. Mair P, Wilcox R (2018a) WRS2: Wilcox robust estimation and testing, version 0.10-0. https://cran.r-project.org/package=survival
  26. Mair P, Wilcox R (2018b) Robust statistical methods using WRS2. https://rdrr.io/cran/WRS2/. Accessed 18 Feb 2019
  27. Mason P, Everatt M, Loomans A, Collatz J (2017) Harmonizing the regulation of invertebrate biological control agents in the EPPO region: using the NAPPO region as a model. EPPO Bull 47:79–90CrossRefGoogle Scholar
  28. Mazzetto F, Marchetti E, Amiresmaeili N, Sacco D, Francati S, Jucker C, Dindo ML, Lupi D, Tavella L (2016) Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J Pest Sci 89:837–850CrossRefGoogle Scholar
  29. Meylaers K, Freitak D, Schoofs L (2007) Immunocompetence of Galleria mellonella: sex- and stage-specific differences and the physiological cost of mounting an immune response during metamorphosis. J Insect Physiol 53:146–156CrossRefGoogle Scholar
  30. Miller B, Anfora G, Buffington M, Daane KM, Dalton DT, Hoelmer K, Rossi Stacconi MV, Grassi A, Ioratti C, Loni A, Miller JC, Ouantar M, Wang XG, Wiman N, Walton VM (2015) Seasonal occurence of resident parasitoids associated with Drosophila suzukii in two small fruit production regions of Italy and the USA. B Insectol 68:255–263Google Scholar
  31. Noyes JS (2018) Universal Chalcidoidea database. http://www.nhm.ac.uk/chalcidoids. Accessed 01 Dec 2018
  32. Offenberger M, Klarenberg AJ (1997) Hymenopteran parasitoids of Drosophila breeding in decaying herbage. NachrBl bayer Ent 46:11–19Google Scholar
  33. Onagbola EO, Fadamiro HY, Mbata GN (2007) Longevity, fecundity, and progeny sex ratio of Pteromalus cerealellae in relation to diet, host provision, and mating. Biol Control 40:222–229CrossRefGoogle Scholar
  34. Prevosti A, Ribo G, Serra L, Aguade M, Balaña J, Monclus M, Mestres F (1988) Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc Natl Acad Sci USA 85:5597–5600CrossRefGoogle Scholar
  35. Quicke DLJ (1997) Parasitic wasps. Chapman & Hall, LondonGoogle Scholar
  36. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. https://www.r-project.org/
  37. Rogers LE, Hinds WT, Buschbom RL (1976) A general weight vs. length relationship for insects. Ann Entomol Soc Am 69:387–389CrossRefGoogle Scholar
  38. Rossi Stacconi MV, Buffington M, Daane KM, Dalton DT, Grassi A, Kacar G, Miller B, Miller JC, Baser N, Ioratti C, Walton VM, Wiman N, Wang XG, Anfora G (2015) Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biol Control 84:28–35CrossRefGoogle Scholar
  39. Rossi Stacconi MV, Panel A, Baser N, Loriatti C, Pantezzi T, Anfora G (2017) Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. JAMA 112:20-27Google Scholar
  40. Rossi Stacconi MV, Amiresmaeili N, Biondi A, Carli C, Caruso S, Dindo ML, Francati S, Gottardello A, Grassi A, Lupi L (2018) Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol Control 117:188–196CrossRefGoogle Scholar
  41. Therneau T (2015) A package for survival analysis in S, version 2.38. https://cran.r-project.org/package=survival
  42. Thistlewood HMA, Gibson GAP, Gillespie DR, Fitzpatrick SM (2013) Drosophila suzukii (Matsumura), spotted wing Drosophila (Diptera: Drosophilidae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI, Wallingford, pp 152–155Google Scholar
  43. Wang X-G, Kaçar G, Biondi A, Daane KM (2016a) Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. BioControl 61:387–397CrossRefGoogle Scholar
  44. Wang X-G, Kaçar G, Biondi A, Daane KM (2016b) Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol Control 96:64–71CrossRefGoogle Scholar
  45. Warnes GR, Boker B, Lumley T, Johnson RC (2018) gmodels: various R programming tools for model fitting. R Package Version 2.18.1. https://cran.r-project.org/package=gmodels
  46. Wilcox R (2012) Introduction to robust estimation and hypothesis testing, 3rd edn. Academic Press, AmsterdamGoogle Scholar
  47. Wolf S, Zeisler C, Sint D, Romeis J, Traugott M, Collatz J (2018) A simple and cost-effective molecular method to track predation on Drosophila suzukii in the field. J Pest Sci 91:927–935CrossRefGoogle Scholar
  48. Yang ZQ (1996) Parasitic wasps on bark beetles in China (Hymenoptera). Science Press, BeijingGoogle Scholar
  49. Zhu C-J, Li J, Wang H, Zhang M, Hu H-Y (2017) Demographic potential of the pupal parasitoid Trichopria drosophilae (Hymenoptera: Diapriidae) reared on Drosophila suzukii (Diptera: Drosophilidae). J Asia-Pac Entomol 20:747–751CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2019

Authors and Affiliations

  1. 1.Research Division Agroecology and EnvironmentAgroscopeZurichSwitzerland
  2. 2.Department of InvertebratesNatural History Museum BernBernSwitzerland
  3. 3.Institute of Ecology and EvolutionUniversity of BernBernSwitzerland

Personalised recommendations