Advertisement

BioControl

, Volume 63, Issue 6, pp 785–794 | Cite as

Rate of consumption, biological parameters, and population growth capacity of Orius laevigatus fed on Spodoptera exigua

  • Miguel Aragón-Sánchez
  • Luis R. Román-Fernández
  • Héctor Martínez-García
  • Agustín Aragón-García
  • Ignacio Pérez-Moreno
  • Vicente S. Marco-Mancebón
Article

Abstract

Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is already successfully used to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in protected crops. In the present work, the predatory capacity of O. laevigatus on the eggs and larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) as well as the population growth capacity of O. laevigatus fed on eggs of the noctuid were determined. Fourth and 5th instar nymphs had a greater consumption of eggs than younger ones. Females consumed more eggs than males. Only 5th instar nymphs and adults preyed on the neonatal larvae of S. exigua. The intrinsic rate of natural increase did not differ between O. laevigatus fed with S. exigua eggs and those offered eggs of the substitute host Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Thus, O. laevigatus is a good candidate for the biological control of S. exigua, a cosmopolitan pest of many crops.

Keywords

Predation capacity Intrinsic rate of natural increase Hemiptera Anthocoridae Lepidoptera Noctuidae 

Notes

Acknowledgement

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACyT), México, for the support granted with a scholarship for the completion of doctorate studies of the first author.

References

  1. Arnó J, Gabarra R, Roig J, Fosch T (1998) Integrated pest management for processing tomatoes in the Ebro Delta (Spain). Acta Hort 487:207–212Google Scholar
  2. Balachowsky AS (1972) Entomologie appliquée à l’agriculture. Tome II. Lépidoptères. 2º Volume. Zygaenoidea-Pyraloidea-Noctuoidea. Masson et Cie, ParisGoogle Scholar
  3. Ballal CR, Yamada K (2016) Anthocorid predators. In: Omkar (ed) Ecofriendly pest management for food security. Elsevier, New York, pp 183–216CrossRefGoogle Scholar
  4. Bonte M, De Clercq P (2008) Developmental and reproductive fitness of Orius laevigatus (Hemiptera: Anthocoridae) reared on factitious and artificial diets. J Econ Entomol 101:1127–1133CrossRefGoogle Scholar
  5. Bonte M, De Clercq P (2009) Impact of artificial rearing systems on the developmental and reproductive fitness of the predatory bug, Orius laevigatus. J Insect Sci 10:104.  https://doi.org/10.1673/031.010.10401 Google Scholar
  6. Bonte M, De Clercq P (2010a) Influence of diet on the predation rate of Orius laevigatus on Frankliniella occidentalis. BioControl 55:625–629CrossRefGoogle Scholar
  7. Bonte M, De Clercq P (2010b) Influence of male age and diet on reproductive potential of Orius laevigatus (Hemiptera: Anthocoridae). Ann Entomol Soc Am 103:597–602CrossRefGoogle Scholar
  8. Bonte M, De Clercq P (2011) Influence of predator density, diet and living substrate on developmental fitness of Orius laevigatus. J Appl Entomol 135:343–350CrossRefGoogle Scholar
  9. Bonte M, De Hauwere L, Colong D, De Clercq P (2015) Predation capacity, development and reproduction of the southern African flower bugs Orius thripoborus and Orius naivashae (Hemiptera: Anthocoridae) on various prey. Biol Control 86:52–59CrossRefGoogle Scholar
  10. Caballero P, Murillo R, Muñóz D, Williams T (2009) El nucleopoliedrovirus de Spodoptera exigua (Lepidoptera: Noctuidae) como bioplaguicida: análisis de avances recientes en España. Rev Col Entomol 35(2):105–115Google Scholar
  11. Chambers RJ, Long S, Helyer NL (1993) Effectiveness of Orius laevigatus (Hemiptera: Anthocoridae) for the control of Frankliniella occidentalis on cucumber and pepper in the UK. Biocontrol Sci Technol 3:295–307CrossRefGoogle Scholar
  12. Cocuzza GE, De Clercq PD, Lizzio S, Veire M, Tirry L, Degheele D, Vacante V (1997) Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomol Exp Appl 85:189–198CrossRefGoogle Scholar
  13. De Clercq P, Degheele D (1994) Laboratory measurement of predation by Podisus maculiventris and P. sagitta (Hemiptera: Pentatomidae) on beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 87:76–83CrossRefGoogle Scholar
  14. De Clercq P, Coudron TA, Riddick EW (2014) Production of heteropteran predators. In: Morales-Ramos J, Rojas G, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Academic Press, Amsterdam, pp 57–100CrossRefGoogle Scholar
  15. Ehler LE (2004) An evaluation of some natural enemies of Spodoptera exigua on sugar beet in northern California. BioControl 49:121–135CrossRefGoogle Scholar
  16. Ferkovich SM, Venkatesan T, Shapiro JP, Carpenter JE (2007) Presentation of artificial diet: effects of composition and size of prey and diet domes on egg production by Orius insidiosus (Heteroptera: Anthocoridae). Fla Entomol 90(3):502–508CrossRefGoogle Scholar
  17. Grenier S, De Clecq P (2003) Comparation of artificially vs. naturally reared natural enemies and their potential for use in biological control. In: van Lenteren J (ed) Quality control and production of biological control agent. CABI Publishing, Wallingford, pp 115–131Google Scholar
  18. Isenhour DJ, Yeargan KV (1981) Predation by Orius insidiosus on the soybean thrips, Sericothrips variabilis: effect of prey stage and diversity. Environ Entomol 10:496–500CrossRefGoogle Scholar
  19. Isenhour DJ, Layton RC, Wiseman BR (1990) Potential of adult Orius insidiosus (Hemiptera: Anthocoridae) as a predator of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Entomophaga 35(2):269–275CrossRefGoogle Scholar
  20. Jacas J, Urbaneja A, García-Marí F (2008) Artrópodos depredadores. In: Jacas J, Urbaneja A (eds) Control biológico de plagas agrícolas. Phytoma-España, Valencia, pp 39–56Google Scholar
  21. Metcalf CL, Flint WP (1988) Insectos destructivos e insectos útiles. Sus costumbres y su control. Continental Editorial, MexicoGoogle Scholar
  22. Meyer JS, Ingersoll CG, McDonald LL (1987) Sensitivity analysis of population growth rates estimated from cladoceran chronic toxicity test. Evironm Toxicol Chem 6:115–126CrossRefGoogle Scholar
  23. Oballe R, Vargas-Osuna E, Lyra JRM, Aldebis HK, Santiago-Alvarez C (1995) Secuencia de aparición de parasitoides en poblaciones larvarias de lepidópteros que atacan al algodón en el Valle del Guadalquivir. Bol San Veg Plagas 21:659–664Google Scholar
  24. Poitout S, Bues R (1970) Élevage de plusieurs espèces de lépidoptères Noctuidae sur milieu artificiel riche et sur milieu artificiel simplifié. Ann Zool Ecol Anim 2:79–91Google Scholar
  25. Rim H, Uefune M, Ozawa R, Takabayashi J (2015) Olfactory response of the omnivorous mirid bug Nesidiocoris tenuis to eggplants infested by prey: specificity in prey developmental stages and prey species. Biol Control 91:47–54CrossRefGoogle Scholar
  26. Robledo-Camacho A, van der Blom J, Sánchez-Martínez JA, Torres-Giménez S (2009) Control biológico de invernaderos hortícolas. Coexphal, AlmeríaGoogle Scholar
  27. Ruiz-de-Escudero I, Banyuls N, Bel Y, Maeztu M, Escriche B, Muñoz D, Caballero P, Ferré J (2014) A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol 117:51–55CrossRefGoogle Scholar
  28. Sánchez JA, Lacasa A (2002) Modelling population dynamics of Orius laevigatus and O. albidipennis (Hemiptera: Anthocoridae) to optimize their use as biological control agents of Frankliniella occidentalis (Thysanoptera: Thripidae). Bull Entomol Res 92:77–88Google Scholar
  29. Schmidt JM, Richards PC, Nadel H, Ferguson G (1995) A rearing method for the production of large numbers of the insidiosus flower bug, Orius insidiosus (Say) (Hemiptera: Anthocoridae). Can Entomol 127:445–447CrossRefGoogle Scholar
  30. Shakya S, Weintraub PG, Coll M (2009) Effect of pollen supplement on intraguild predatory interactions between two omnivores: the importance of spatial dynamics. Biol Control 50:281–287CrossRefGoogle Scholar
  31. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Ann Rev Entomol 47:561–594CrossRefGoogle Scholar
  32. Taberner A, Castañera P, Silvestre E, Bopazo J (1993) Estimation of the intrinsic rate of natural increase and its error by both algebraic and resampling approaches. Comput Appl Biosci 9:535–540Google Scholar
  33. Tommasini MG, van Lenteren JC, Burgio G (2004) Biological traits and predation capacity of four Orius species on two prey species. Bull Insectol 57:79–93Google Scholar
  34. Urbaneja A, van Der Blom J, Lara L, Timmer R, Blackmans K (2002) Utilización de Cotesia marginiventris (Cresson) (Hym.: Braconidae) para el control biológico de orugas (Lep.: Noctuidae) en el manejo integrado de plagas en el pimiento bajo invernadero. Bol San Veg Plagas 28:239–259Google Scholar
  35. van Der Blom J (2008) Pimiento bajo abrigo. In: Jacas J, Urbaneja A (eds) Control biológico de plagas agrícolas. Phytoma-España, Valencia, pp 399–409Google Scholar
  36. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 27:1–20CrossRefGoogle Scholar
  37. Yoshida HA, Parrella MP (1992) Development and use of selected Chrysantemum cultivars by Spodoptera exigua (Lep. Noctuidae). J Econ Entomol 85:2377–2382CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2018

Authors and Affiliations

  • Miguel Aragón-Sánchez
    • 1
  • Luis R. Román-Fernández
    • 2
  • Héctor Martínez-García
    • 2
  • Agustín Aragón-García
    • 1
  • Ignacio Pérez-Moreno
    • 2
  • Vicente S. Marco-Mancebón
    • 2
  1. 1.Centro de Agroecología, Instituto de CienciasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Departamento de Agricultura y AlimentaciónUniversidad de La RiojaLogroñoSpain

Personalised recommendations