Advertisement

BioControl

, Volume 63, Issue 6, pp 819–831 | Cite as

Comparative effects of temperature and thermoregulation on candidate strains of entomopathogenic fungi for Moroccan locust Dociostaurus maroccanus control

  • Pablo Valverde-Garcia
  • Cándido Santiago-Alvarez
  • Matthew B. Thomas
  • Inmaculada Garrido-Jurado
  • Enrique Quesada-Moraga
Article
  • 87 Downloads

Abstract

Strains IMI 330189 of Metarhizium acridum (Driver & Milner) J.F. Bisch., Rehner & Humber (Hypocreales: Clavicipitaceae) and EABb 90/2-Dm of Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Cordycipitaceae) are a promising biocontrol tool of Dociostaurus maroccanus (Thunberg) (Orthoptera: Acrididae), although the effects of thermoregulation and Moroccan locust-fever on the infection process of these fungi remain unknown. In vitro experiments, measuring conidial germination and hyphal growth either at constant or at fluctuating temperatures simulating thermoregulatory conditions, indicated that strain IMI 330189 had greater fitness at temperatures above 27 °C and the strain EABb 90/2-Dm was better adapted to the temperature range of 10–25 °C. These effects were mirrored in vivo, where locust thermoregulation caused a marked reduction in the virulence of EABb 90/2-Dm in comparison to no thermoregulation conditions (average survival time: 6.10 vs. 15.83 days; mortality: 100% vs. 73.7%) but only a moderate reduction in the virulence of IMI 330189 (average survival time: 4.57 vs. 8.26 days; mortality: 100% vs. 100%). Thermal gradient experiments revealed that the strain IMI 330189 induced behavioral fever in D. maroccanus (preferred temperatures approximately 4 °C above the uninfected control), although it only led to a slight reduction in virulence. Strain EABb 90/2-Dm did not induce such a clear behavioral response. Under the temperature conditions of the main breeding areas of the Moroccan locust, strain IMI 330189 is likely a better candidate for use in biocontrol, although strain EABb 90/2-Dm could be also a good alternative in more temperate environments either as a stand-alone one or in mixed combinations of the two fungal strains, potentially providing more effective control over a broader range of temperatures.

Keywords

Metarhizium acridum Beauveria bassiana Thermoregulation Locust Fever 

Notes

Acknowledgements

We thank Dr. Elizabeth Maranhão and Dr. Karl D. Schnelle for their scientific collaboration and review of the document. This research was supported by the project AGL2016-80483-R from the Spanish Ministry of Science, Innovation and Universities. Dr. Inmaculada Garrido-Jurado thanks the Ministry of Economy and Competitiveness of the Spanish Government for a Juan de la Cierva post-doctoral Grant.

References

  1. Anderson RD, Blanford S, Jenkins NE, Thomas MB (2013a) Discriminating fever behavior in house flies. PLoS ONE 8(4):e62269.  https://doi.org/10.1371/journal.pone.0062269 CrossRefGoogle Scholar
  2. Anderson RD, Blanford S, Thomas MB (2013b) House flies delay fungal infection by fevering: at a cost. Ecol Entomol 38:1–10CrossRefGoogle Scholar
  3. Arthurs S, Thomas MB (2001) Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria. J Invertebr Pathol 78:59–65CrossRefGoogle Scholar
  4. Bidochka MJ, Kasperski JE, Wild GAM (1998) Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can J Bot-Rev Can Bot 76:1198–1204CrossRefGoogle Scholar
  5. Bidochka MJ, Melzer MJ, Lavender TM, Kamp AM (2000) Genetically related isolates of the entomopathogenic fungus Metarhizium anisopliae harbour homologous dsRNA viruses. Mycol Res 104:1094–1097CrossRefGoogle Scholar
  6. Bidochka MJ, Menzies FV, Kamp AM (2002) Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol 178:531–537CrossRefGoogle Scholar
  7. Blanford S, Thomas MB (2000) Thermal behavior of two acridid species: effects of habitat and season on body temperature and the potential impact on biocontrol with pathogens. Environ Entomol 29:1060–1069CrossRefGoogle Scholar
  8. Blanford S, Thomas MB, Langewald J (1998) Behavioral fever in the Senegalese grasshopper, Oedaleus senegalensis, and its implications for biological control using pathogens. Ecol Entomol 23:9–14CrossRefGoogle Scholar
  9. Carruthers RI, Larkin TS, Firstencel H, Feng ZD (1992) Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73:190–204CrossRefGoogle Scholar
  10. Chappell MA, Whitman DW (1990) Grasshopper thermoregulation. In: Chapman RF (ed) Biology of grasshoppers. Wiley Interscience, New York, pp 143–172Google Scholar
  11. Collar-Urquijo JL, Celma-Calamita J, Blandford S, Thomas MB (2002) Control de Dociostaurus maroccanus y Calliptamus italicus (Orthoptera: Acrididae) mediante aplicaciones en campo de Metarhizium anisopliae var acridum. Bol San Veg Plagas 28:185–192Google Scholar
  12. Darbro JM, Graham RI, Kay BH, Ryan PA, Thomas MB (2011) Evaluation of entomopathogenic fungi as potential biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae). Bicontrol Sci Technol 21:1027–1047CrossRefGoogle Scholar
  13. Elliot SL, Blanford S, Thomas MB (2002) Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc R Soc Lond Ser B-Biol Sci 269:1599–1607CrossRefGoogle Scholar
  14. Elliot SL, Blanford S, Horton CM, Thomas MB (2003) Fever and phenotype: transgenerational effect of disease on desert locust phase state. Ecol Lett 6:830–836CrossRefGoogle Scholar
  15. Fargues J, Goettel MS, Smits N, Ouedraogo A, Rougier M (1997a) Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins. Mycologia 89:383–392CrossRefGoogle Scholar
  16. Fargues J, Ouedraogo A, Goettel MS, Lomer CJ (1997b) Effects of temperature, humidity and inoculation method on susceptibility of Schistocerca gregaria to Metarhizium flavoviride. Biocontrol Sci Technol 7:345–356CrossRefGoogle Scholar
  17. Fisher JJ, Hajek AE (2014) Thermoregulatory behavior and fungal infection of Anoplophora glabripennis (Coleoptera: Cerambycidae). Environ Entomol 43:384–392CrossRefGoogle Scholar
  18. Henke MO, de Hoog GS, Gross U, Zimmerman G, Kraemer D, Weig M (2002) Human deep tissue infection with an entomopathogenic Beauveria species. J Clin Microbiol 40:2698–2702CrossRefGoogle Scholar
  19. Hernandez-Crespo P, Santiago-Álvarez C (1997) Entomopathogenic fungi associated with natural populations of the Moroccan locust Dociostaurus maroccanus (Orthoptera: Gomphocerinae) and other Acridoidea in Spain. Biocontrol Sci Technol 7:357–363CrossRefGoogle Scholar
  20. Hunt VL, Charnley AK (2011) The inhibitory effect of the fungal toxin, destruxin A, on behavioural fever in the desert locust. J Insect Physiol 57:1341–1346CrossRefGoogle Scholar
  21. Hunt VL, Lock GD, Pickering SG, Charnley AK (2011) Application of infrared thermography to the study of behavioural fever in the desert locust. J Therm Biol 36:443–451CrossRefGoogle Scholar
  22. Inglis GD, Johnson DL, Goettel MS (1996) Effects of temperature and thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biol Control 7:131–139CrossRefGoogle Scholar
  23. Inglis GD, Duke GM, Kawchuk LM, Goettel MS (1999) Influence of oscillating temperatures on the competitive infection and colonization of the migratory grasshopper by Beauveria bassiana and Metarhizium flavoviride. Biol Control 14:111–120CrossRefGoogle Scholar
  24. Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomicetous fungi for managing insect pests. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI International, Wallingford, pp 23–69CrossRefGoogle Scholar
  25. Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. BioControl 55:159–185CrossRefGoogle Scholar
  26. Jiménez-Medina J, Aldebis HK, Santiago-Alvarez C (1998) Valoración insecticida de diversos aislados de hongos hifomicetos para el control de la langosta mediterránea, Dociostaurus maroccanus (Thunberg). Bol San Veg Plagas 24:867–872Google Scholar
  27. Keyser CA, Fernandes EKK, Rangel DEN, Roberts DW (2014) Heat-induced post-stress growth delay: a biological trait of many Metarhizium isolates reducing biocontrol efficacy? J Invertebr Pathol 120:67–73CrossRefGoogle Scholar
  28. Klass JI, Blanford S, Thomas MB (2007) Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric For Entomol 9:189–199CrossRefGoogle Scholar
  29. Klinger EG, Vojvodic S, DeGrandi-Hoffman G, Welker DL, James RR (2015) Mixed infections reveal virulence differences between host-specific bee pathogens. J Invertebr Pathol 129:28–35CrossRefGoogle Scholar
  30. Latchininsky AV, Launois-Luong MH (1992) Le criquet marocain, Dociostaurus maroccanus (Thunberg, 1815) dans la partie orientale de son aire de distribution. Etude monographique à l’ex-URSS et aux pays proches. Montpellier/VIZR, Saint-PetersbourgGoogle Scholar
  31. Liu HP, Skinner M, Brownbridge M, Parker BL (2003) Characterization of Beauveria bassiana and Metarhizium anisopliae isolates for management of tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae). J Invertebr Pathol 82:139–147CrossRefGoogle Scholar
  32. Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702CrossRefGoogle Scholar
  33. Milner RJ, Staples JA, Prior C (1996) Laboratory susceptibility of Locusta migratoria (L), Austracris guttulosa (Walker) and Valanga irregularis (Walker) (Orthoptera: Acrididae) to an oil formulation of Metarhizium flavoviride Gams and Rozsypal (Deuteromycotina: Hyphomycetes). Aust J Entomol 35:355–360CrossRefGoogle Scholar
  34. Ouedraogo A, Fargues J, Goettel MS, Lomer CJ (1997) Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride. Mycopathologia 137:37–43CrossRefGoogle Scholar
  35. Ouedraogo RM, Kamp A, Goettel MS, Brodeur J, Bidochka MJ (2002) Attenuation of fungal infection in thermoregulating Locusta migratoria is accompanied by changes in hemolymph proteins. J Invertebr Pathol 81:19–24CrossRefGoogle Scholar
  36. Ouedraogo RM, Goettel MS, Brodeur J (2004) Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection. Oecologia 138:312–319CrossRefGoogle Scholar
  37. Quesada-Moraga E (1998) Biología y ecología de la reproducción y desarrollo embrionario de la langosta mediterránea Dociostaurus maroccanus (Thunberg) y su posible interferencia como estrategia de lucha. PhD Thesis, University of Cordoba. SpainGoogle Scholar
  38. Quesada-Moraga E, Santiago-Álvarez C (2001) Rearing and breeding of the Moroccan locust Dociostaurus maroccanus (Thunberg) (Orthop., Acrididae) under laboratory conditions. J Appl Entomol-Z Angew Entomol 125:121–124CrossRefGoogle Scholar
  39. Quesada-Moraga E, Maranhao EAA, Valverde-Garcia P, Santiago-Alvarez C (2006) Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity. Biol Control 36:274–287CrossRefGoogle Scholar
  40. Rangel DEN, Fernandes EKK, Dettenmaier SJ, Roberts DW (2010) Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. J Basic Microbiol 50:344–350CrossRefGoogle Scholar
  41. Robertson JL, Russell RM, Preisler HK, Savin NE (2007) Bioassays with arthropods, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  42. SAS (2015) JMP pro 12.2.0 SAS Institute Inc., Cary, NCGoogle Scholar
  43. Springate S, Thomas MB (2005) Thermal biology of the meadow grasshopper, Chorthippus parallelus, and the implications for resistance to disease. Ecol Entomol 30:724–732CrossRefGoogle Scholar
  44. Stroup WW (2012) Generalized linear mixed models: modern concepts, methods and applications. CRC Press, Boca RatonGoogle Scholar
  45. Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350CrossRefGoogle Scholar
  46. Thomas MB, Jenkins NE (1997) Effects of temperature on growth of Metarhizium flavoviride and virulence to the variegated grasshopper, Zonocerus variegatus. Mycol Res 101:1469–1474CrossRefGoogle Scholar
  47. Thomas MB, Watson EL, Valverde-Garcia P (2003) Mixed infections and insect-pathogen interactions. Ecol Lett 6:183–188CrossRefGoogle Scholar
  48. Tucker DL, Beresford CH, Sigler L, Rogers K (2004) Disseminated Beauveria bassiana infection in a patient with acute lymphoblastic leukemia. J Clin Microbiol 42:5412–5414CrossRefGoogle Scholar
  49. Vega FE, Kaya HK (2012) Insect pathology, 2nd edn. Academic Press, San DiegoGoogle Scholar
  50. Wang Y, Yang P, Cui F, Kang L (2013) Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. PLoS Pathog 9(1):e1003102.  https://doi.org/10.1371/journal.ppat.1003102 CrossRefGoogle Scholar
  51. Yeo H, Pell JK, Alderson PG, Clark SJ, Pye BJ (2003) Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Manag Sci 59:156–165CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2018

Authors and Affiliations

  • Pablo Valverde-Garcia
    • 1
  • Cándido Santiago-Alvarez
    • 1
  • Matthew B. Thomas
    • 2
  • Inmaculada Garrido-Jurado
    • 1
  • Enrique Quesada-Moraga
    • 1
  1. 1.Department of Agricultural and Forestry Sciences, ETSIAMUniversity of CordobaCordobaSpain
  2. 2.Center for Infectious Disease Dynamics and Department of Entomology, 001 Chemical Ecology LabPenn StateUniversity ParkUSA

Personalised recommendations