, Volume 63, Issue 6, pp 763–771 | Cite as

Effect of host feeding on life history traits of Tamarixia radiata, parasitoid of the Asian citrus psyllid, Diaphorina citri

  • Marco Gebiola
  • Francesc Gomez-Marco
  • Gregory S. Simmons
  • Richard Stouthamer


The parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) is being used for the biological control of the Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Liviidae). The parasitoid is strongly synovigenic, as it is born with very few mature eggs. Synovigenic insects need to feed on host haemolymph to mature additional eggs, and are able to resorb mature eggs to allocate resources toward maintenance. We investigated the effect of host feeding on parasitism, longevity and egg load dynamics, and estimated egg maturation and resorption rates. Although host feeding does not increase survival or longevity, it results in increased parasitization rates when parasitoids are seven days old, and that a single host meal leads to an average gain of three eggs. We discuss the importance of these data to predict the foraging and parasitization behavior of T. radiata in the field, and to potentially improve current efforts to control ACP.


Citrus Eulophidae Hemiptera Hymenoptera Liviidae Synovigeny 



Authors are thankful to Josep Anton Jaques Miret and two reviewers for their helpful comments, and to Nickolas Moreno for providing T. radiata. The study was funded by USDA APHIS grants no. 15-8130-0309-CA and 17-8130-0306-CA, Citrus Research Board Grant CRB 17-5500-196, and USDA NIFA Hatch fund 194617.


  1. Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37Google Scholar
  2. Briggs CJ, Nisbet RM, Murdoch WW, Collier TR (1995) Dynamical effects of host-feeding in parasitoids. J Anim Ecol 64:403–416CrossRefGoogle Scholar
  3. Casas J, Nisbet RM, Swarbrick S (2000) Eggload dynamics and oviposition rate in a wild population of a parasitic wasp. J Anim Ecol 69:185–193CrossRefGoogle Scholar
  4. Casas J, Vannier F, Mandon N, Delbecque JP, Giron D, Monge JP (2009) Mitigation of egg limitation in parasitoids: immediate hormonal response and enhanced oogenesis after host use. Ecology 90:537–545CrossRefGoogle Scholar
  5. Chan MS, Godfray H (1993) Host-feeding strategies of parasitoid wasps. Evol Ecol 7:593–604CrossRefGoogle Scholar
  6. Chen X, Stansly PA (2014a) Biology of Tamarixia radiata (Hymenoptera: Eulophidae), parasitoid of the citrus greening disease vector Diaphorina citri (Hemiptera: Psylloidea): A mini review. Fla Entomol 97:1404–1413CrossRefGoogle Scholar
  7. Chen X, Stansly PA (2014b) Effect of holding diet on egg formation of Tamarixia radiata (Hymenoptera: Eulophidae), parasitoid of Diaphorina citri (Hemiptera: Psylloidae). Fla Entomol 97:491–495CrossRefGoogle Scholar
  8. Chu YI, Chien CC (1991) Utilization of natural enemies to control psyllid vectors transmitting citrus greening. Integrated control of plant virus diseases. In: Proceedings of International Workshop on TARI. Taichung, Taiwan, pp 135–145Google Scholar
  9. Collier TR (1995) Host feeding, egg maturation, resorption, and longevity in the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae). Ann Entomol Soc Am 88:206–214CrossRefGoogle Scholar
  10. Ellers J, Sevenster JG, Driessen G (2000) Egg load evolution in parasitoids. Am Nat 156:650–665CrossRefGoogle Scholar
  11. Giron D, Pincebourde S, Casas J (2004) Lifetime gains of host-feeding in a synovigenic parasitic wasp. Physiol Entomol 29:426–432CrossRefGoogle Scholar
  12. Heimpel GE, Collier TR (1996) The evolution of host-feeding behaviour in insect parasitoids. Biol Rev 71:373–400CrossRefGoogle Scholar
  13. Heimpel GE, Rosenheim JA (1995) Dynamic host feeding by the parasitoid Aphytis melinus: the balance between current and future reproduction. J Anim Ecol 64:153–167CrossRefGoogle Scholar
  14. Heimpel GE, Rosenheim JA (1998) Egg limitation in parasitoids: A review of the evidence and a case study. Biol Control 11:160–168CrossRefGoogle Scholar
  15. Heimpel GE, Rosenheim JA, Kattari D (1997) Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomol Exp Appl 83:305–315CrossRefGoogle Scholar
  16. Heimpel GE, Mangel M, Rosenheim JA (1998) Effects of time limitation and egg limitation on lifetime reproductive success of a parasitoid in the field. Am Nat 152:273–289CrossRefGoogle Scholar
  17. Hoddle MS (2012) Foreign exploration for natural enemies of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), in the Punjab of Pakistan for use in a classical biological program in California USA. Pak Entomol 34:1–5CrossRefGoogle Scholar
  18. Hoddle MS, Hoddle CD (2013) Classical biological control of Asian citrus psyllid with Tamarixia radiata in urban Southern California. Citrograph 4:52–58Google Scholar
  19. Jervis MA, Kidd N (1986) Host feeding strategies in hymenopteran parasitoids. Biol Rev 61:395–434CrossRefGoogle Scholar
  20. Jervis MA, Heimpel GE, Ferns PN, Harvey JA, Kidd NAC (2001) Life history strategies in parasitoid wasps: a comparative analysis of ‘ovigeny’. J Anim Ecol 70:442–458CrossRefGoogle Scholar
  21. Jervis MA, Ellers J, Harvey JA (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu Rev Entomol 53:361–385CrossRefGoogle Scholar
  22. Kapranas A, Luck RF (2008) Egg maturation, host feeding, and longevity in two Metaphycus parasitoids of soft scale insects. Biol Control 47:147–153CrossRefGoogle Scholar
  23. Kidd NAC, Jervis MA (1989) The effects of host-feeding behaviour on the dynamics of parasitoid-host interactions, and the implications for biological control. Res Pop Ecol 31:235–274CrossRefGoogle Scholar
  24. Kistner EJ, Amrich R, Castillo M, Strode V, Hoddle MS (2016) Phenology of Asian citrus psyllid (Hemiptera: Liviidae), with special reference to biological control by Tamarixia radiata, in the residential landscape of Southern California. J Econ Entomol 109:1047–1057CrossRefGoogle Scholar
  25. Mangel M, Heimpel GE (1998) Reproductive senescence and dynamic oviposition behaviour in insects. Evol Ecol 12:871–879CrossRefGoogle Scholar
  26. Mills NJ, Heimpel GE (2018) Could increased understanding of foraging behavior help to predict the success of biological control? Curr Opin Insect Sci 27:26–31CrossRefGoogle Scholar
  27. Mills NJ, Wajnberg E (2008) Optimal foraging behaviour and efficient biological control methods. In: Wajnberg E, Bernstein C, van Alphen JJM (eds) Behavioural ecology of insect parasitoids: From theoretical approaches to field applications. Blackwell, Oxford, pp 3–30Google Scholar
  28. Papaj DR (2000) Ovarian dynamics and host use. Ann Rev Entomol 45:223–248CrossRefGoogle Scholar
  29. Qureshi JA, Rogers ME, Hall DG, Stansly PA (2009) Incidence of invasive Diaphorina citri (Hemiptera: Psyllidae) and its introduced parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) in Florida Citrus. J Econ Entomol 102:247–256CrossRefGoogle Scholar
  30. Richard R, Casas J (2009) Stochasticity and controllability of nutrient sources in foraging: host-feeding and egg resorption in parasitoids. Ecol Monogr 79:465–483CrossRefGoogle Scholar
  31. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  32. Richard R, Casas J (2012) A quantitative framework for ovarian dynamics. Funct Ecol 26:1399–1408CrossRefGoogle Scholar
  33. Rivero A, West SA (2002) The physiological costs of being small in a parasitic wasp. Evol Ecol Res 4:407–420Google Scholar
  34. Rosenheim JA (1999) Characterizing the cost of oviposition in insects: a dynamic model. Evol Ecol 13:141–165CrossRefGoogle Scholar
  35. Rosenheim JA (2011) Stochasticity in reproductive opportunity and the evolution of egg limitation in insects. Evolution 65:2300–2312CrossRefGoogle Scholar
  36. Rosenheim JA, Rosen D (1991) Foraging and oviposition decisions in the parasitoid Aphytis lingnanensis: distinguishing the influences of egg load and experience. J Anim Ecol 60:873–893CrossRefGoogle Scholar
  37. Rosenheim JA, Heimpel GE, Mangel M (2000) Egg maturation, egg resorption and the costliness of transient egg limitation in insects. Proc R Soc B-Biol Sci 267:1565–1573CrossRefGoogle Scholar
  38. Shea K, Nisbet RM, Murdoch WW, Yoo H (1996) The effect of egg limitation on stability in insect host-parasitoid population models. J Anim Ecol 65:743–755CrossRefGoogle Scholar
  39. Soper A, Hare J, Whitman T, Manzo D, Stouthamer R (2014) Preserving genetic variability in mass-rearing Tamarixia radiata to control ACP. Citrograph (Fall) :58–83Google Scholar
  40. Tena A, Stouthamer R, Hoddle MS (2017) Effect of host deprivation on the foraging behavior of the Asian citrus psyllid parasitoid Tamarixia radiata: observations from the laboratory and the field. Entomol Exp Appl 163:51–59CrossRefGoogle Scholar
  41. Vanaclocha P, Papacek D, Verdú MJ, Urbaneja A (2014) Postteneral protein feeding may improve biological control efficiency of Aphytis lingnanensis and Aphytis melinus. J Insect Sci 14:208–208CrossRefGoogle Scholar
  42. Wu Z, Heimpel GE (2007) Dynamic egg maturation strategies in an aphid parasitoid. Physiol Entomol 32:143–149CrossRefGoogle Scholar
  43. Zang LS, Liu TX (2009) Food-deprived host-feeding parasitoids kill more pest insects. Biocontrol Sci Technol 19:573–583CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2018

Authors and Affiliations

  • Marco Gebiola
    • 1
  • Francesc Gomez-Marco
    • 1
  • Gregory S. Simmons
    • 2
  • Richard Stouthamer
    • 1
  1. 1.Department of EntomologyUniversity of CaliforniaRiversideUSA
  2. 2.Animal and Plant Health Inspection ServiceUnited States Department of AgricultureSalinasUSA

Personalised recommendations