, Volume 64, Issue 1, pp 65–75 | Cite as

Moisturized sheltered sachets are potentially useful for the efficient release of selected predators in a wide range of humidity environments

  • Takeshi ShimodaEmail author
  • Yoshitake Kagawa
  • Hitoshi Yoshizawa
  • Akio Nakano
  • Kunihiko Matsuhira
  • Hirotsugu Yanagita
  • Mitsuki Shimomoto
  • Tetsuya Adachi-Hagimori
  • Kotaro Mori
  • Norihide Hinomoto
  • Tadashi Hiraoka
  • Tetsuo Nakajima


Slow-release sachets of predatory mites are commercially available for controlling small pest arthropods in many crops. We recently developed plant-attached shelters containing sachets and felt patches, called “sheltered sachets”, to protect predators against pesticides and wet conditions, and enhance their release to crops. However, this release system appeared to be vulnerable to dry ambient environments. To address this problem, we developed “moisturized sheltered sachets”, containing water-absorbed polymers as a humidifier, and investigated the numbers of Neoseiulus californicus and Amblyseius swirskii released from three different release systems, at low, moderate, and high RH. Irrespective of predator species and RH (excepting A. swirskii at high RH), more predators were released from the moisturized sheltered sachets than from the sheltered sachets and/or normal sachets. Thus, moisturized sheltered sachets appear to be potentially useful for the efficient predator release in a wide range of humidity environments.


Slow-release sachet Environmental stress Biological control Predatory mite Neoseiulus californicus Amblyseius swirskii 



We gratefully acknowledge the assistance of Professor Hiroshi Amano (Graduate School of Agriculture, Kyoto University, Kyoto, Japan) and Mr. Takeshi Ohya (Kanagawa Agricultural Technology Center, Hiratsuka, Kanagawa, Japan) for valuable comments on this study. We also thank Ms. Sayuki Yamada, Yumiko Togashi and Yoshiko Ishimura for helping us to conduct some of the experiments. This research part of our project [called the Itsudemo-Tenteki (Banker-Sheet) Project in Japanese] was financially supported by the Science and Technology Research Promotion Program for the Agriculture, Forestry, Fisheries And Food Industry (26070C). We are also thankful for the support of all participants in the project.


  1. Adar E, Inbar M, Gal S, Gan-Mor S, Palevsky E (2014) Pollen on-twine for food provisioning and oviposition of predatory mites in protected crops. BioControl 59:307–317CrossRefGoogle Scholar
  2. Agrawal AA, Karban R (1997) Domatia mediate plant-arthropod mutualism. Nature 387:562–563CrossRefGoogle Scholar
  3. Bakker FM, Klein ME, Mesa NC, Braun AR (1993) Saturation deficit tolerance spectra of phytophagous mites and their phytoseiid predators on cassava. Exp Appl Acarol 17:97–113Google Scholar
  4. Buitenhuis R, Shipp L, Scott-Dupree C (2010) Dispersal of Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on potted greenhouse chrysanthemum. Biol Control 52:110–114CrossRefGoogle Scholar
  5. Buitenhuis R, Glemser E, Brommit A (2014) Practical placement improves the performance of slow release sachets of Neoseiulus cucumeris. Biocontrol Sci Technol 24:1153–1166CrossRefGoogle Scholar
  6. Buitenhuis R, Murphy G, Shipp L, Scott-Dupree C (2015) Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp Appl Acarol 65:451–464CrossRefGoogle Scholar
  7. Calvo FJ, Knapp M, van Houten Y, Hoogerbrugge H, Belda J (2015) Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Exp Appl Acarol 65:419–433CrossRefGoogle Scholar
  8. Castagnoli M, Liguori M, Simoni S, Duso C (2005) Toxicity of some insecticides to Tetranychus urticae, Neoseiulus californicus and Tydeus californicus. BioControl 50:611–622CrossRefGoogle Scholar
  9. Danielsen C, Stengård HL, Nachman G, Herling C (2004) The influence of temperature and relative humidity on the development of Lepidoglyphus destructor (Acari: Glycyphagidae) and its production of allergens: a laboratory experiment. Exp Appl Acarol 32:151–170CrossRefGoogle Scholar
  10. De Courcy Williams ME, Kravar-garde L, Fenlon JS, Sunderland KD (2004) Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 32:1–13CrossRefGoogle Scholar
  11. Ferreira JAM, Eshuis B, Janssen A, Sabelis MW (2008) Domatia reduce larval cannibalism in predatory mites. Ecol Entomol 33(3):374–379CrossRefGoogle Scholar
  12. Ferreira JAM, Cunha DFS, Pallini A, Sabelis MW, Janssen A (2011) Leaf domatia reduce intraguild predation among predatory mites. Ecol Entomol 36(4):435–441CrossRefGoogle Scholar
  13. Ferrero M, Gigot C, Tixier MS, van Houten YM, Kreiter S (2010) Egg hatching response to a range of air humidities for six species of predatory mites. Entomol Exp Appl 135:237–244CrossRefGoogle Scholar
  14. Fountain MT, Medd N (2015) Integrating pesticides and predatory mites in soft fruit crops. Phytoparasitica 43:657–667CrossRefGoogle Scholar
  15. Gerson U, Weintraub PG (2011) Mites (Acari) as a factor in greenhouse management. Annu Rev Entomol 57:229–247CrossRefGoogle Scholar
  16. Ghazy NA, Amano H (2016) The use of the cannibalistic habit and elevated relative humidity to improve the storage and shipment of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 69:277–287CrossRefGoogle Scholar
  17. Ghazy NA, Suzuki T, Amano H, Ohyama K (2012) Effects of air temperature and water vapor pressure deficit on storage of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 58:111–120CrossRefGoogle Scholar
  18. Ghazy NA, Osakabe M, Negm MW, Schausberger P, Gotoh T, Amano H (2016) Phytoseiid mites under environmental stress. Biol Control 96:120–134CrossRefGoogle Scholar
  19. Gotoh T, Yamaguchi K, Mori K (2004) Effect of temperature on life history of the predatory mite Amblyseius (Neoseiulus) californicus (Acari: Phytoseiidae). Exp Appl Acarol 32:15–30CrossRefGoogle Scholar
  20. Grostal P, O’Dowd DJ (1994) Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97:308–315CrossRefGoogle Scholar
  21. Knülle W (1991) Genetic and environmental determinants of hypopus duration in the stored-product mite Lepidoglyphus destructor. Exp Appl Acarol 10:231–258CrossRefGoogle Scholar
  22. Kumar V, Xiao Y, McKenzie C, Osborne L (2015) Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach. Exp Appl Acarol 65:465–481CrossRefGoogle Scholar
  23. Lee H-S, Gillespie D (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27CrossRefGoogle Scholar
  24. Matsuhira K, Kakimoto K, Tokunaga T, Omatsu N, Inoue H, Shimoda T, Hinomoto N, Mori K, Nakajima T, Hiraoka T, Ebihara N (2017) Effectiveness against sweetpotato whitefly (Bemisia tabaci (Gennadius)) on kidney bean in greenhouse, of augmentative biological control with the predatory mite (Amblyseius swirskii Athias-Henriot) using shletered slow-release sachet (Banker-Sheet) followed by application narrow leaf cattail pollen (Typha angustifolia Linnaeus, Nutrimite) as an enhancing method. Proc Assoc Pl Prot Kyushu 63:86–90 (in Japanese with English summary)Google Scholar
  25. Norton AP, English-Loeb G, Belden E (2001) Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators. Oecologia 126:535–542CrossRefGoogle Scholar
  26. O’Dowd DJ, Willson MF (1991) Associations between mites and leaf domatia. Trends Ecol Evol 6:179–182CrossRefGoogle Scholar
  27. Okamoto M (1984) Studies on the environmental factors for the life cycle of Carpoglyphus lactis : 1. The effects of relative humidities on individual rearing. Med Entomol Zool 35:269–275 (in Japanese with English summary)CrossRefGoogle Scholar
  28. Onzo A, Sabelis MW, Hanna R (2010) Effects of ultraviolet radiation on predatory mites and the role of refuges in plant structures. Environ Entomol 39:695–701CrossRefGoogle Scholar
  29. Oomen PA, Romeijn G, Wiegers GL (1991) Side-effects of 100 pesticides on the predatory mite Phytoseiulus persimilis, collected and evaluated according to the EPPO Guideline. EPPO Bull 21:701–712CrossRefGoogle Scholar
  30. Opit GP, Nechols JR, Margolies DC, Williams KA (2005) Survival, horizontal distribution, and economics of releasing predatory mites (Acari: Phytoseiidae) using mechanical blowers. Biol Control 33:344–351CrossRefGoogle Scholar
  31. Pekas A, Wäckers FL (2017) Multiple resource supplements synergistically enhance predatory mite populations. Oecologia 184:479–484CrossRefGoogle Scholar
  32. Prado J, Witte AR, Frank S, Sadof CS (2015) Do leaf domatia mediate intraguild predation and host plant resistance to Oligonychus aceris (Shimer) on Red Sunset Maple (Acer rubrum)? Biol Control 90:187–192CrossRefGoogle Scholar
  33. Rowles AD, O’Dowd DJ (2009) Leaf domatia and protection of a predatory mite Typhlodromus doreenae Schicha (Acari: Phytoseiidae) from drying humidity. Aust J Entomol 48:276–281CrossRefGoogle Scholar
  34. Schuepp PH (1993) Leaf boundary layers. New Phytol 125:477–507CrossRefGoogle Scholar
  35. Shimoda T, Kagawa Y, Mori K, Hinomoto N, Hiraoka T, Nakajima T (2017) A novel method for protecting slow-release sachets of predatory mites against environmental stresses and increasing predator release to crops. BioControl 62:495–503CrossRefGoogle Scholar
  36. Shipp JL, van Houten YM (1997) Influence of temperature and vapor pressure deficit on survival of the predatory mite Amblyseius cucumeris (Acari: Phytoseiidae). Environ Entomol 26:106–113CrossRefGoogle Scholar
  37. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Company, New YorkGoogle Scholar
  38. Tachi F, Osakabe M (2012) Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey–predator system. Naturwissenschaften 99:1031–1038CrossRefGoogle Scholar
  39. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20CrossRefGoogle Scholar
  40. van Lenteren JC, Bueno VHP (2003) Augmentative biological control of arthropods in Latin America. BioControl 48(2):123–139CrossRefGoogle Scholar
  41. Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Annu Rev Entomol 41:101–114CrossRefGoogle Scholar
  42. Walzer A, Castagnoli M, Simoni S, Liguori M, Palevsky E, Schausberger P (2007) Intraspecific variation in humidity susceptibility of the predatory mite Neoseiulus californicus: survival, development and reproduction. Biol Control 41:42–52CrossRefGoogle Scholar
  43. Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41:232–237CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2018

Authors and Affiliations

  • Takeshi Shimoda
    • 1
    Email author
  • Yoshitake Kagawa
    • 2
  • Hitoshi Yoshizawa
    • 3
  • Akio Nakano
    • 4
  • Kunihiko Matsuhira
    • 5
  • Hirotsugu Yanagita
    • 6
  • Mitsuki Shimomoto
    • 7
  • Tetsuya Adachi-Hagimori
    • 7
    • 8
  • Kotaro Mori
    • 2
  • Norihide Hinomoto
    • 1
  • Tadashi Hiraoka
    • 9
  • Tetsuo Nakajima
    • 10
  1. 1.Central Region Agricultural Research CenterNAROTsukubaJapan
  2. 2.Central Research Institute, Ishihara Sangyo Kaisha, LtdKusatsuJapan
  3. 3.Gunma Agricultural Technology CenterIsesakiJapan
  4. 4.Tokushima Agriculture, Forestry, and Fisheries Technology Support CenterMyozaiJapan
  5. 5.Kagoshima Prefectural Institute for Agricultural DevelopmentMinamisatsumaJapan
  6. 6.Fukuoka Agriculture and Forestry Research CenterChikushinoJapan
  7. 7.Kochi Agricultural Research CenterNankokuJapan
  8. 8.Organization for Promotion of Tenure TrackUniversity of MiyazakiMiyazakiJapan
  9. 9.DAIKYO GIKEN-KOGYO Co., LtdSagamiharaJapan
  10. 10.ISK Biosciences K.K.Chiyoda-kuJapan

Personalised recommendations