Advertisement

BioControl

, Volume 64, Issue 1, pp 55–64 | Cite as

Intraguild predation between Harmonia axyridis and Aphidius gifuensis: effects of starvation period, plant dimension and extraguild prey density

  • Xing-Lin Yu
  • Yi Feng
  • Wen-Yan Fu
  • Yuan-Xing Sun
  • Tong-Xian LiuEmail author
Article
  • 87 Downloads

Abstract

The effects of various factors on intraguild predation (IGP) between predators have been widely investigated. However, little is known about the influence of these factors on IGP between predators and parasitoids. Under laboratory conditions, we studied the effects of starvation period of predator, plant dimension, and extraguild prey density on IGP between Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) and Aphidius gifuensis Ashmead (Hymenoptera: Braconidae), two natural enemies of Myzus persicae (Sulzer) (Hemiptera: Aphididae). Both H. axyridis fourth instar and adults consumed A. gifuensis mummies. H. axyridis fourth instar and adults starved for 24 and 48 h had a higher frequency of IGP than those that were not starved. However, the number of aphids and mummies consumed by H. axyridis did not differ between the 24 and 48 h starvation treatments. Although IGP still occurred, mummy consumption decreased with increasing aphid density and plant dimension. In addition, H. axyridis consistently preferred aphids to mummies. Our results indicate that prey preference of H. axyridis, a shorter starvation period of predator (< 48 h), larger plant dimension, and higher extraguild prey density could reduce the frequency of IGP by H. axyridis on A. gifuensis, and thus decrease the negative impact of IGP on aphid control.

Keywords

Coccinellidae Braconidae Aphididae Starvation period Plant dimension Extraguild prey density 

Notes

Acknowledgements

We are grateful for the assistance of all staff and students in the Key Laboratory of Applied Entomology, Northwest A&F University at Yangling, Shaanxi, China. Funding of this research was partially supported by the following grants: the National Natural Science Foundation of China (No. 31272089), and China Agriculture Research System (No. CARS-25-B-06).

References

  1. Arkkelin D (2014) Using SPSS to understand research and data analysis. Valparaiso University, ValparaisoGoogle Scholar
  2. Avila GA, Charles JG (2018) Modelling the potential geographic distribution of Trissolcus japonicus: a biological control agent of the brown marmorated stink bug, Halyomorpha halys. BioControl 63:505–518CrossRefGoogle Scholar
  3. Boivin G, Hance T, Brodeur J (2012) Aphid parasitoids in biological control. Can J Plant Sci 92:1–12CrossRefGoogle Scholar
  4. Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Entomol Exp Appl 97:93–108CrossRefGoogle Scholar
  5. Chacón JM, Heimpel GE (2010) Density-dependent intraguild predation of an aphid parasitoid. Oecologia 164:213–220CrossRefGoogle Scholar
  6. Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R, Desneux N (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J Pest Sci 86:533–541CrossRefGoogle Scholar
  7. Colfer RG, Rosenheim JA (2001) Predation on immature parasitoids and its impact on aphid suppression. Oecologia 126:292–304CrossRefGoogle Scholar
  8. Denno RF, Fagan WF (2003) Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84:2522–2531CrossRefGoogle Scholar
  9. Finke DL, Denno RF (2002) Intraguild predation diminished in complex structured vegetation: implications for prey suppression. Ecology 83:643–652CrossRefGoogle Scholar
  10. Finke DL, Denno RF (2006) Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149:265–275CrossRefGoogle Scholar
  11. Fu WY, Yu XL, Ahmed N, Zhang SZ, Liu TX (2017) Intraguild predation on the aphid parasitoid Aphelinus asychis by the ladybird Harmonia axyridis. BioControl 62:61–70CrossRefGoogle Scholar
  12. Gagnon AÈ, Brodeur J (2014) Impact of plant architecture and extraguild prey density on intraguild predation in an agroecosystem. Entomol Exp Appl 152:165–173CrossRefGoogle Scholar
  13. Gontijo LM, Beers EH, Snyder WE (2015) Complementary suppression of aphids by predators and parasitoids. Biol Control 90:83–91CrossRefGoogle Scholar
  14. Hemptinne JL, Lognay G, Gauthier C, Dixon AFG (2000) Role of surface chemical signals in egg cannibalism and intraguild predation in ladybirds (Coleoptera: Coccinellidae). Chemoecology 10:123–128CrossRefGoogle Scholar
  15. Hindayana D, Meyhöfer R, Scholz D, Poehling HM (2001) Intraguild predation among the hoverfly Episyrphus balteatus de Geer (Diptera: Syrphidae) and other aphidophagous predators. Biol Control 20:236–246CrossRefGoogle Scholar
  16. Ingels B, Clercq PD (2011) Effect of size, extraguild prey and habitat complexity on intraguild interactions: a case study with the invasive ladybird Harmonia axyridis and the hoverfly Episyrphus balteatus. BioControl 56:871–882CrossRefGoogle Scholar
  17. Janssen A, Sabelis MW, Magalhães S, Montserrat M, van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719CrossRefGoogle Scholar
  18. Jeschke JM, Kopp M, Tollrian R (2002) Predator functional responses: discriminating between handling and digesting prey. Ecol Monogr 72:95–112CrossRefGoogle Scholar
  19. Lü XK, Xu X, Ma L, Liu Q, Chen GH, Li Q (2013) Study on characteristics and dynamics of arthropod community in corn field of Zhaotong, Yunnan. J Environ Entomol 35:707–712Google Scholar
  20. Lucas É, Brodeur J (2001) A fox in a sheep-clothing: dilution effect for a furtive predator living inside prey aggregation. Ecology 82:3246–3250CrossRefGoogle Scholar
  21. Lucas É, Rosenheim JA (2011) Influence of extraguild prey density on intraguild predation by heteropteran predators: a review of the evidence and a case study. Biol Control 59:61–67CrossRefGoogle Scholar
  22. Lucas É, Coderre D, Brodeur J (1998) Intraguild predation among aphid predators: characterization and influence of extraguild prey density. Ecology 79:1084–1092CrossRefGoogle Scholar
  23. Maselou D, Perdikis D, Fantinou A (2015) Effect of hunger level on prey consumption and functional response of the predator Macrolophus pygmaeus. Bull Insectol 68:211–218Google Scholar
  24. Meisner M, Harmon JP, Harvey CT, Ives AR (2011) Intraguild predation on the parasitoid Aphidius ervi by the generalist predator Harmonia axyridis: the threat and its avoidance. Entomol Exp Appl 138:193–201CrossRefGoogle Scholar
  25. Meyhöfer R (2001) Intraguild predation by aphidophagous predators on parasitised aphids: the use of multiple video cameras. Entomol Exp Appl 100:77–87CrossRefGoogle Scholar
  26. Meyling NV, Enkegaard A, Brodsgaard H (2004) Intraguild predation by Anthocoris nemorum (Heteroptera: Anthocoridae) on the aphid parasitoid Aphidius colemani (Hymenoptera: Braconidae). Biocontrol Sci Technol 14:627–630CrossRefGoogle Scholar
  27. Mirande L, Desneux N, Haramboure M, Schneider MI (2015) Intraguild predation between an exotic and a native coccinellid in Argentina: the role of prey density. J Pest Sci 88:155–162CrossRefGoogle Scholar
  28. Nakashima Y, Teshiba M, Hirose Y (2002) Flexible use of patch marks in an insect predator: effect of sex, hunger state, and patch quality. Ecol Entomol 27:581–587CrossRefGoogle Scholar
  29. Nóia M, Borges I, Soares AO (2008) Intraguild predation between the aphidophagous ladybird beetles Harmonia axyridis and Coccinella undecimpunctata (Coleoptera: Coccinellidae): the role of intra and extraguild prey densities. Biol Control 46:140–146CrossRefGoogle Scholar
  30. Pan MZ, Liu TX (2014) Suitability of three aphid species for Aphidius gifuensis (Hymenoptera: Braconidae): parasitoid performance varies with hosts of origin. Biol Control 69:90–96CrossRefGoogle Scholar
  31. Pan MZ, Wang L, Zhang CY, Zhang LX, Liu TX (2017) The influence of feeding and host deprivation on egg load and reproduction of an aphid parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae). Appl Entomol Zool 52:255–263CrossRefGoogle Scholar
  32. Pell JK, Baverstock J, Roy HE, Ware RL (2008) Intraguild predation involving Harmonia axyridis: a review of current knowledge and future perspectives. BioControl 53:147–168CrossRefGoogle Scholar
  33. Pérez-Guerrero S, Gelan-Begna A, Vargas-Osuna E (2015) Compatibility of Orius laevigatus and Cheiracanthium pelasgicum for predation on Helicoverpa armigera eggs: effects of density and day/night activity on intraguild predation. BioControl 60:783–793CrossRefGoogle Scholar
  34. Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154CrossRefGoogle Scholar
  35. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330CrossRefGoogle Scholar
  36. Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399CrossRefGoogle Scholar
  37. Riddick EW (2017) Spotlight on the positive effects of the ladybird Harmonia axyridis on agriculture. BioControl 62:319–330CrossRefGoogle Scholar
  38. Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29:299–320CrossRefGoogle Scholar
  39. Rondoni G, Onofri A, Ricci C (2012) Laboratory studies on intraguild predation and cannibalism among coccinellid larvae (Coleoptera: Coccinellidae). Eur J Entomol 109:353–362CrossRefGoogle Scholar
  40. Roy HE, Brown PM (2015) Ten years of invasion: Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in Britain. Ecol Entomol 40:336–348CrossRefGoogle Scholar
  41. Sitvarin MI, Rypstra AL (2014) The importance of intraguild predation in predicting emergent multiple predator effects. Ecology 95:2936–2945CrossRefGoogle Scholar
  42. Snyder WE, Ives AR (2001) Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–716CrossRefGoogle Scholar
  43. Sohrabi F, Enkegaard A, Shishehbor P, Saber M, Mosaddegh MS (2013) Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa. BioControl 58:65–72CrossRefGoogle Scholar
  44. Torres JB, Evangelista WS, Barras R, Guedes RNC (2002) Dispersal of Podisus nigrispinus (Het., Pentatomidae) nymphs preying on tomato leafminer: effect of predator release time, density and satiation level. J Appl Entomol 126:326–332CrossRefGoogle Scholar
  45. Wang SY, Chi H, Liu TX (2016) Demography and parasitic effectiveness of Aphelinus asychis reared from Sitobion avenae as a biological control agent of Myzus persicae reared on chili pepper and cabbage. Biol Control 92:111–119CrossRefGoogle Scholar
  46. Wells PM, Baverstock J, Clark SJ, Jiggins FM, Roy HE, Pell JK (2017) Determining the effects of life stage, shared prey density and host plant on intraguild predation of a native lacewing (Chrysoperla carnea) by an invasive coccinellid (Harmonia axyridis). BioControl 62:373–384CrossRefGoogle Scholar
  47. Ximenez-Embun MG, Zaviezo T, Grez A (2014) Seasonal, spatial and diel partitioning of Acyrthosiphon pisum (Hemiptera: Aphididae) predators and predation in alfalfa fields. Biol Control 69:1–7CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2018

Authors and Affiliations

  • Xing-Lin Yu
    • 1
  • Yi Feng
    • 1
  • Wen-Yan Fu
    • 1
  • Yuan-Xing Sun
    • 1
  • Tong-Xian Liu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
  2. 2.State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina

Personalised recommendations