Advertisement

BioControl

, Volume 62, Issue 5, pp 693–704 | Cite as

Plectosphaerella cucumerina as a bioherbicide for Cirsium arvense: proof of concept

  • Karen Bailey
  • Jo-Anne Derby
  • Graeme BourdôtEmail author
  • Bob Skipp
  • Mike Cripps
  • Geoff Hurrell
  • David Saville
  • Alasdair Noble
Article

Abstract

Plectosphaerella cucumerina (Lindf.) W. Gams was evaluated as a bioherbicide for Cirsium arvense L. (Scop.) using a Canadian and a New Zealand isolate. Both isolates defoliated C. arvense when applied at 1013 conidia ha−1 in water volumes ranging from 250 to 6400 l ha−1 with a rapid decline in effect with declining conidial dose. Repeat application and the addition of the adjuvant Pulse® penetrant to the conidial suspension increased the disease severity in C. arvense. Maximum disease occurred at 20 °C with a 48 h post-application dew period. The experiments demonstrate that P. cucumerina can defoliate C. arvense under the environmental conditions of temperate pastures where the weed is problematic. The results also show that modifications to formulation and strategic application may reduce the 48 h dew period requirement and risk to non-target species respectively, supporting the conclusion that the fungus has potential as a bioherbicide for C. arvense.

Keywords

Mycoherbicide Canada thistle Californian thistle Creeping thistle Plectosphaerellaceae Asteraceae 

Notes

Acknowledgements

We thank Meat and Wool New Zealand (now Beef + Lamb New Zealand) and the Foundation for Research Science and Technology for funding Experiment 1 (under Projects 05AR/16 and C10X0811 respectively). We also thank the Ministry for Business, Innovation and Employment, New Zealand, for funding Experiments 4 and 5 (through AgResearch core funding) and Carolyn Lusk, AgResearch, for technical assistance. Experiments 2 and 3 were funded under Agriculture and Agri-Food Canada A-base research.

References

  1. Bailey KL, Falk S (2011) Turning research on microbial bioherbicides into commercial products—A Phoma story. Pest Technology 5 (Special Issue 1):73-79Google Scholar
  2. Bailey KL, Carisse O, Leggett M, Holloway G, Leggett F, Wolf TM, Shivpuri A, Derby J, Caldwell B, Geissler HJ (2007) Effect of spraying adjuvants with the biocontrol fungus Microsphaeropsis ochracea at different water volumes on the colonization of apple leaves. Biocontrol Sci Tech 17:1021–1036CrossRefGoogle Scholar
  3. Berner D, Smallwood E, Cavin C, Lagopodi A, Kashefi J, Kolomiets T, Pankratova L, Mukhina Z, Cripps M, Bourdôt G (2013) Successful establishment of epiphytotics of Puccinia punctiformis for biological control of Cirsium arvense. Biol Control 67:350–360CrossRefGoogle Scholar
  4. Bourdôt GW, Saville DJ (2010) Bioherbicide safety zones and the plant disease-inoculum density relationship. Weed Technol 24:193–196CrossRefGoogle Scholar
  5. Bourdôt GW, Hurrell GA, Saville DJ, Leathwick DM (2006) Impacts of applied Sclerotinia sclerotiorum on the dynamics of a Cirsium arvense population. Weed Res 46:61–72CrossRefGoogle Scholar
  6. Bourdôt GW, Basse B, Cripps MG (2016) Mowing strategies for controlling Cirsium arvense in pasture in New Zealand compared using a matrix model. Ecol Evol 6:1–10CrossRefGoogle Scholar
  7. Bruton B, Miller M (1997) Occurrence of vine decline diseases of muskmelon in Guatemala. Plant Dis 81:694CrossRefGoogle Scholar
  8. Chung Y, Koo S, Kim H, Cho K (1998) Potential of an indigenous fungus, Plectosporium tabacinum, as a mycoherbicide for control of arrowhead (Sagittaria trifolia). Plant Dis 82:657–660CrossRefGoogle Scholar
  9. Cripps M, Gassmann A, Fowler SV, Bourdôt GW, McClay AS, Edwards G (2011) Classical biological control of Cirsium arvense: lessons from the past. Biol Control 57:165–174CrossRefGoogle Scholar
  10. Dillard HR, Cobb AC, Shah DA, Straight KE (2005) Identification and characterization of russet on snap beans caused by Plectosporium tabacinum. Plant Dis 89:700–704CrossRefGoogle Scholar
  11. Guske S, Schulz B, Boyle C (2004) Biocontrol options for Cirsium arvense with indigenous fungal pathogens. Weed Res 44:107–116CrossRefGoogle Scholar
  12. Hamdoun AM (1972) Regenerative capacity of root fragments of Cirsium arvense (L.) Scop. Weed Res 12:128–136CrossRefGoogle Scholar
  13. Heinmann B, Cussans GW (1996) The importance of seeds and sexual reproduction in the population biology of Cirsium arvense—a literature review. Weed Res 36:493–503CrossRefGoogle Scholar
  14. Hershenhorn J, Vurro M, Zonno MC, Stierle A, Strobel G (1993) Septoria cirsii, a potential biocontrol agent of Canada thistle and its phytotoxin—beta-nitropropionic acid. Plant Sci 94:227–234CrossRefGoogle Scholar
  15. Leth V, Netland J, Andreasen C (2008) Phomopsis cirsii: a potential biocontrol agent of Cirsium arvense. Weed Res 48:1–9CrossRefGoogle Scholar
  16. Palm ME, Gams W, Nirenberg HI (1995) Plectosporium, a new genus for Fusarium tabacinum, the anamorph of Plectosphaerella cucumerina. Mycologia 87:397–406CrossRefGoogle Scholar
  17. Sato T, Inaba T, Mori M, Watanabe K, Tomioka K, Hamaya E (2005) Plectosporium blight of pumpkin and ranunculus caused by Plectosporium tabacinum. J Gen Plant Pathol 71:127–132CrossRefGoogle Scholar
  18. Saville DJ, Rowarth JS (2008) Statistical measures, hypotheses, and tests in applied research. J Nat Resour Life Sci Educ 37:74–82Google Scholar
  19. Seifert KA (1996) Fungi Canadenses No. 333. Plectosporium tabacinum. Can J Plant Path 18:309–311CrossRefGoogle Scholar
  20. Skipp RA, Bourdôt GW, Hurrell GA, Chen LY, Wilson DJ, Saville DJ (2013) Verticillium dahliae and other pathogenic fungi in Cirsium arvense from New Zealand pastures: occurrence, pathogenicity and biological control potential. N. Z. J Agric Res 56:1–21CrossRefGoogle Scholar
  21. Smither-Kopperl M, Charudattan R, Berger R (1999) Plectosporium tabacinum, a pathogen of the invasive aquatic weed Hydrilla verticillata in Florida. Plant Dis 83:24–28CrossRefGoogle Scholar
  22. Tiley GED (2010) Biological flora of the British Isles: Cirsium arvense (L.) Scop. J Ecol 98:938–983CrossRefGoogle Scholar
  23. Vitale S, Maccaroni M, Belisario A (2007) First report of zucchini collapse by Fusarium solani f. sp. cucurbitae Race 1 and Plectosporium tabacinum in Italy. Plant Dis 91:325CrossRefGoogle Scholar
  24. Wood GR, Saville DJ (2013) A geometric examination of linear model assumptions. Aust N Z J Stat 55:285–303CrossRefGoogle Scholar
  25. Young S (2012) New Zealand Novachem Agrichemical Manual, vol 2012. Agrimedia Ltd, ChristchurchGoogle Scholar
  26. Youssef Y, El-Tarabily K, Hussein A (2001) Plectosporium tabacinum root rot disease of white lupine (Lupinus termis Forsk.) and its biological control by Streptomyces species. J Phytopathol 149:29–33CrossRefGoogle Scholar
  27. Zazzerini A, Tosi L (1987) New sunflower disease caused by Fusarium tabacinum. Plant Dis 71:1043–1044CrossRefGoogle Scholar
  28. Zhang W, Sulz M, Bailey KL (2002a) Evaluation of Plectosporium tabacinum for control of herbicide-resistant and herbicide-susceptible false cleavers. Weed Sci 50:79–85CrossRefGoogle Scholar
  29. Zhang WM, Sulz M, Bailey KL, Cole DE (2002b) Effect of epidemiological factors on the impact of the fungus Plectosporium tabacinum on false cleavers (Galium spurium). BioControl Sci Tech 12:183–194CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2017

Authors and Affiliations

  • Karen Bailey
    • 1
  • Jo-Anne Derby
    • 1
  • Graeme Bourdôt
    • 2
    Email author
  • Bob Skipp
    • 3
  • Mike Cripps
    • 2
  • Geoff Hurrell
    • 2
  • David Saville
    • 4
  • Alasdair Noble
    • 2
  1. 1.Agriculture and Agri-Food CanadaSaskatoonCanada
  2. 2.AgResearch, LincolnChristchurchNew Zealand
  3. 3.AgResearchPalmerston NorthNew Zealand
  4. 4.Saville Statistical ConsultingLincolnNew Zealand

Personalised recommendations