, Volume 59, Issue 6, pp 707–718 | Cite as

Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics

  • Juracy C. LinsJr.
  • Joop J. A. van Loon
  • Vanda H. P. Bueno
  • Dani Lucas-Barbosa
  • Marcel Dicke
  • Joop C. van Lenteren


Knowledge about the orientation mechanisms used by two important predaceous mirids (Macrolophus pygmaeus Rambour and Nesidiocoris tenuis (Reuter)) in finding their prey (whitefly Bemisia tabaci (Gennadius) and the tomato borer Tuta absoluta (Meyrick)) is limited. In a Y-tube olfactometer, we tested the behavioral responses of naïve and experienced predators to uninfested plants, herbivore-induced plant volatiles (HIPVs) from plants infested with T. absoluta and/or B. tabaci, the sex pheromone of T. absoluta, and volatiles produced by plants injured by the predators. Nesidiocoris tenuis responds to volatiles produced by uninfested plants only after experience with the plant, whereas naïve and experienced M. pygmaeus show positive chemotaxis. Both predators are attracted to volatiles from prey-infested plants, and we provide the first evidence that experience affects this response in M. pygmaeus. Infestation of the same plant by both prey species elicited similar responses by the two predators as plants infested by either herbivore singly. Neither predator responded to sex pheromones of T. absoluta. Macrolophus pygmaeus avoided plants injured by conspecifics, while N. tenuis females were attracted by such plants. The implications of these results for augmentative biological control are discussed.


Dyciphini Olfactometer bioassay Herbivore-induced plant volatiles Bemisia tabaci Tuta absoluta 



We thank Dr. Russell Messing and the two reviewers for helping us to improve the manuscript, the Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) for a research grant to Lins Jr within the CAPES/Nuffic Programme Project 044/12, the Foundation for Support of Research of the State of Minas Gerais (FAPEMIG) and the Laboratory of Entomology of Wageningen University for financial support of the project.


  1. Arnó J, Castañé C, Riudavets J, Gabarra R (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bull Entomol Res 100:105–115PubMedCrossRefGoogle Scholar
  2. Bompard A, Jaworski CC, Bearez P, Desneux N (2013) Sharing a predator: can an invasive alien pest affect the predation on a local pest? Popul Ecol 55:433–440CrossRefGoogle Scholar
  3. Bueno VHP, van Lenteren JC (2012) Predatory bugs (Heteroptera). In: Panizzi AR, Parra JRP (eds) Insect bioecology and nutrition for integrated pest management. CRC Press, Boca Raton, USA, pp 539–569CrossRefGoogle Scholar
  4. Calvo FJ, Lorente MJ, Stansly PA, Belda JE (2012) Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisa tabaci in greenhouse tomato. Entomol Exp Appl 143:111–119CrossRefGoogle Scholar
  5. Carvalho LM, Bueno VHP, Castañé C (2011) Olfactory response towards its prey Frankliniella occidentalis of wild and laboratory-reared Orius insidiosus and Orius laevigatus. J Appl Entomol 135:177–183CrossRefGoogle Scholar
  6. Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29CrossRefGoogle Scholar
  7. de Boer JG, Snoeren T, Dicke M (2005) Predatory mites learn to discriminate between plant volatiles induced by prey and non-prey herbivores. Anim Behav 69:869–879CrossRefGoogle Scholar
  8. de Boer JG, Hordijk CA, Posthumus MA, Dicke M (2008) Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J Chem Ecol 34:281–290PubMedCentralPubMedCrossRefGoogle Scholar
  9. Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  10. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  11. Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142CrossRefGoogle Scholar
  12. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139CrossRefGoogle Scholar
  13. Dicke M, van Loon JJA, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324PubMedCrossRefGoogle Scholar
  14. Drukker B, Bruin J, Sabelis MW (2000) Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. Physiol Entomol 25:260–265CrossRefGoogle Scholar
  15. EFSA Panel on Plant Health (PLH) (2013) Scientific opinion on the risks to plant health posed by Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA J 11:3162–3464Google Scholar
  16. Erbilgin N, Raffa KF (2001) Modulation of predator attraction to pheromones of two prey species by stereochemistry of plant volatiles. Oecologia 127:444–453CrossRefGoogle Scholar
  17. Eubanks MD, Styrsky JD (2005) Effects of plant feeding on the performance of omnivorous “predators”. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, UK, pp 148–177CrossRefGoogle Scholar
  18. Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689CrossRefGoogle Scholar
  19. Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA, Dicke M, Harvey JA, Gols R, Huigens ME (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS ONE 7:e43607PubMedCentralPubMedCrossRefGoogle Scholar
  20. Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V (2011) Olfactory learning of plant genotypes by a polyphagous insect predator. Oecologia 166:637–647PubMedCentralPubMedCrossRefGoogle Scholar
  21. Guedes R, Picanço M (2012) The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bull 42(2):211–216CrossRefGoogle Scholar
  22. Hickel ER, Vilela EF (1991) Comportamento de chamamento e aspectos do comportamento de acasalamento de Scrobipalpula absoluta (Lep., Gelechiidae), sob condições de campo. Ann Soc Entomol Bras 20:173–182Google Scholar
  23. Ingegno BL, Pansa MG, Tavella L (2011) Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biol Control 58:174–181CrossRefGoogle Scholar
  24. Ingegno BL, Ferracini C, Gallinotti D, Alma A, Tavella L (2013) Evaluation of the effectiveness of Dicyphus errans (Wolff) as predator of Tuta absoluta (Meyrick). Biol Control 67:246–252CrossRefGoogle Scholar
  25. Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N (2013) Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS ONE 8:e82231PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331PubMedCrossRefGoogle Scholar
  27. McGregor RR, Gillespie DR (2004) Olfactory responses of the omnivorous generalist predator Dicyphus hesperus to plant and prey odours. Entomol Exp Appl 112:201–205Google Scholar
  28. Messelink GJ, van Maanen R, van Steenpaal SE, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379CrossRefGoogle Scholar
  29. Moayeri HRS, Ashouri A, Brodsgaard HF, Enkegaard A (2006a) Odour-mediated preference and prey preference of Macrolophus caliginosus between spider mites and green peach aphids. J Appl Entomol 130:504–508CrossRefGoogle Scholar
  30. Moayeri HRS, Ashouri A, Brodsgaard HF, Enkegaard A (2006b) Odour-mediated responses of a predatory mirid bug and its prey, the twospotted spider mite. Exp Appl Acarol 40:27–36PubMedCrossRefGoogle Scholar
  31. Moayeri HRS, Ashouri A, Brodsgaard HF, Enkegaard A (2007a) Males of the predatory mirid bug Macrolophus caliginosus exploit plant volatiles induced by conspecifics as a sexual synomone. Entomol Exp Appl 123:49–55CrossRefGoogle Scholar
  32. Moayeri HRS, Ashouri A, Poll L, Enkegaard A (2007b) Olfactory response of a predatory mirid to herbivore induced plant volatiles: multiple herbivory vs. single herbivory. J Appl Entomol 131:326–332CrossRefGoogle Scholar
  33. Mollá Ó (2013) Control biológico de la polilla del tomate Tuta absoluta (Lepidoptera: Gelechiidae) mediante la gestión de míridos depredadores. Ph.D. Thesis, Faculty of Biological Sciences, University of Valencia, SpainGoogle Scholar
  34. Mouttet R, Kaplan I, Bearez P, Amiens-Desneux E, Desneux N (2013) Spatiotemporal patterns of induced resistance and susceptibility linking diverse plant parasites. Oecologia 173:1379–1386PubMedCrossRefGoogle Scholar
  35. Ponzio C, Gols R, Pieterse CM, Dicke M (2013) Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Funct Ecol 27:587–598CrossRefGoogle Scholar
  36. Raman K, Sanjayan K, Suresh G (1984) Impact of feeding injury of Cyrtopeltis tenuis Reut. (Hemiptera: Miridae) on some biochemical changes in Lycopersicon esculentum Mill. (Solanaceae). Curr Sci 53:1092–1093Google Scholar
  37. Sampson C, Jacobson R (1999) Macrolophus caliginosus Wagner (Heteroptera: Miridae): a predator causing damage in UK tomatoes. IOBC/WPRS Bull 22:249–256Google Scholar
  38. Sanchez JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biol Control 51:493–498CrossRefGoogle Scholar
  39. Sanchez J, Lacasa A (2008) Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. J Econ Entomol 101:1864–1870PubMedCrossRefGoogle Scholar
  40. Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomol Exp Appl 108:133–148CrossRefGoogle Scholar
  41. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270PubMedCrossRefGoogle Scholar
  42. Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol 133:292–296CrossRefGoogle Scholar
  43. Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222PubMedCrossRefGoogle Scholar
  44. Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172CrossRefGoogle Scholar
  45. Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216PubMedGoogle Scholar
  46. Zhang PJ, Zheng SJ, van Loon JJA, Boland W, David A, Mumm R, Dicke M (2009) Whiteflies interfere with indirect plant defense against spider mites in Lima bean. P Natl Acad Sci USA 106:21202–21207CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2014

Authors and Affiliations

  • Juracy C. LinsJr.
    • 1
    • 2
  • Joop J. A. van Loon
    • 1
  • Vanda H. P. Bueno
    • 2
  • Dani Lucas-Barbosa
    • 1
  • Marcel Dicke
    • 1
  • Joop C. van Lenteren
    • 1
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  2. 2.Laboratory of Biological Control, Department of EntomologyFederal University of LavrasLavrasBrazil

Personalised recommendations