Advertisement

BioControl

, Volume 59, Issue 5, pp 557–564 | Cite as

A semi-artificial rearing system for the specialist predatory ladybird Cryptolaemus montrouzieri

  • Sara Maes
  • Tim Antoons
  • Jean-Claude Grégoire
  • Patrick De Clercq
Article

Abstract

In the present study a semi-artificial rearing system for the Australian ladybird Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae), a specialist predator of mealybugs, was developed. In a first step, a rearing system using eggs of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) as a food and synthetic polyester wadding as an oviposition substrate was compared with a natural rearing system using the citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae), as to its effects on the predator’s developmental and reproductive parameters. In a second series of experiments the performance of C. montrouzieri on bee pollen or on a mixture of E. kuehniella eggs and bee pollen was assessed. E. kuehniella eggs proved to be a suitable food to support larval development of the predator. Ladybird larvae reared on flour moth eggs developed two days faster and weighed approximately 10 % more than their counterparts reared on mealybugs. Despite a prolongation of the preoviposition period with ca. eight days and a decrease in egg hatch by about 10 %, C. montrouzieri females fed moth eggs accepted the synthetic wadding as an oviposition substrate and deposited the same number of eggs their counterparts maintained on mealybugs. A mixture of E. kuehniella eggs with pollen yielded similar developmental and reproductive rates as E. kuehniella eggs alone, but a diet of bee pollen alone was not adequate for the predator. Our findings indicate the potential of a rearing system using E. kuehniella eggs as a factitious food and synthetic wadding as an artificial oviposition substrate for the mass production of C. montrouzieri.

Keywords

Biological control Rearing Factitious food Artificial oviposition substrate Coleoptera Coccinellidae 

Notes

Acknowledgments

This research was supported by BOF (UGent).

References

  1. Attia AR, El-Arnaouty SA, Afifi AI, Alla AEA (2011) Development and fecundity of the Coccinellid predator, Cryptolaemus montrouzieri Mulsant on different types of prey. Egypt J Biol Pest Control 21:283–289Google Scholar
  2. Babu R, Azam K (1987) Biology of Cryptolaemus montrouzieri Mulsant (Coccinellidae: Coleoptera) in relation with temperature. Entomophaga 32:381–386CrossRefGoogle Scholar
  3. Berkvens N, Bonte J, Berkvens D, Deforce K, Tirry L, De Clercq P (2008a) Pollen as an alternative food for Harmonia axyridis. BioControl 53:201–210CrossRefGoogle Scholar
  4. Berkvens N, Bonte J, Berkvens D, Tirry L, De Clercq P (2008b) Influence of diet and photoperiod on development and reproduction of European populations of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). BioControl 53:211–221CrossRefGoogle Scholar
  5. Bonte M, Samih MA, De Clercq P (2010) Development and reproduction of Adalia bipunctata on factitious and artificial foods. BioControl 55:485–491CrossRefGoogle Scholar
  6. Chong JH, Oetting RD (2007) Intraguild predation and interference by the mealybug predator Cryptolaemus montrouzieri on the parasitoid Leptomastix dactylopii. Biocontrol Sci Technol 17:933–944CrossRefGoogle Scholar
  7. Chumakova BM (1962) Opyt rozvedeniya khishchnovo zhuka kriptolemusa na isskustvennych sredakh. Biol Met Borby s Vred Selsk Kult, Moskva 1:143–146Google Scholar
  8. Clausen CP (1978) Introduced parasites and predators of arthropod pests and weeds: a world review. United States Department of Agriculture, Washington, USAGoogle Scholar
  9. Cocuzza GE, De Clercq P, Lizzio S, van de Veire M, Tirry L, Degheele D (1997) Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomol Exp Appl 85:189–198CrossRefGoogle Scholar
  10. De Clercq P, Bonte M, van Speybroeck K, Bolckmans K, Deforce K (2005) Development and reproduction of Adalia bipunctata (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Lepidoptera: Phycitidae) and pollen. Pest Manag Sci 61:1129–1132PubMedCrossRefGoogle Scholar
  11. De Clercq P, Coudron TA, Riddick EW (2013) Production of heteropteran predators. In: Morales-Ramos JA, Guadalupe Rojas M, Shapiro-Ilan DE (eds) Mass production of beneficial organisms. Elsevier Inc, London, UK, pp 57–100Google Scholar
  12. DeBach P, Hagen KS (1964) Manipulation of entomophagous species. In: DeBach P, Schlinger EI (eds) Biological control of insect pests and weeds. Chapmann and Hall, London, UK, pp 429–458Google Scholar
  13. Fauvel G, Malausa JC, Kaspar B (1987) Etude en laboratoire des principales caractéristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 32:529–543CrossRefGoogle Scholar
  14. Finlay-Doney M, Walter GH (2012) Behavioral responses to specific prey and host plant species by a generalist predatory coccinellid (Cryptolaemus montrouzieri Mulsant). Biol Control 63:270–278CrossRefGoogle Scholar
  15. Fisher TW (1963) Mass culture of Cryptolaemus and Leptomastix: natural enemies of the citrus mealybug. California Agricultural experiment station, Berkeley, USAGoogle Scholar
  16. Hamasaki K, Matsui M (2006) Development and reproduction of an aphidophagous coccinellid, Propylea japonica (Thunberg) (Coleoptera: Coccinellidae), reared on an alternative diet, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs. Appl Entomol Zool 41:233–237CrossRefGoogle Scholar
  17. Hodek I (1967) Bionomics and ecology of predaceous Coccinellidae. Annu Rev Entomol 12:79–104CrossRefGoogle Scholar
  18. Hodek I, Honĕk A (2009) Scale insects, mealybugs, whiteflies and psyllids (Hemiptera: Sternorrhyncha) as prey for ladybirds. Biol Control 51:232–243CrossRefGoogle Scholar
  19. Lundgren JG, Weber DC (2010) Changes in digestive rate of a predatory beetle over its larval stage: implications for dietary breadth. J Insect Physiol 56:431–437PubMedCrossRefGoogle Scholar
  20. Lundgren JG, Moser SE, Hellmich RL, Seagraves MP (2011) The effects of diet on herbivory by a predaceous lady beetle. Biocontrol Sci Technol 21:71–74CrossRefGoogle Scholar
  21. McCullagh P, Nelder J (1989) Generalized linear models. Chapmann and Hall, London, UKCrossRefGoogle Scholar
  22. Merlin J, Lemaitre O, Grégoire JC (1996) Oviposition in Cryptolaemus montrouzieri stimulated by wax filaments of its prey. Entomol Exp Appl 79:141–146CrossRefGoogle Scholar
  23. Morales-Ramos JA, Guadalupe Rojas M, Coudron TA (2013) Artificial diet development for entomophagous arthropods. In: Morales-Ramos JA, Guadalupe Rojas M, Shapiro-Ilan DE (eds) Mass production of beneficial organisms. Elsevier Inc, London, UK, pp 203–234Google Scholar
  24. Muştu M, Kilinçer N, Ulgentürk S, Kaydan MB (2008) Feeding behaviour of Cryptolaemus montrouzieri on mealybugs parasitized by Anagyrus pseudococci. Phytoparasitica 36:360–367CrossRefGoogle Scholar
  25. Nguyen DT, Vangansbeke D, Lü X, De Clercq P (2013) Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. BioControl 58:369–377CrossRefGoogle Scholar
  26. Pilipjuk VI, Bugaeva LN, Baklanova EV (1982) On the possibility of breeding the predatory beetle Cryptolaemus montrouzieri Muls. (Coleoptera: Coccinellidae) on the eggs of Sitotroga cerealella Ol. Entomologicheskoe Obozrenie 1:50–52Google Scholar
  27. Pilorget L, Buckner J, Lundgren JG (2010) Sterol limitation in a pollen-fed omnivorous lady beetle (Coleoptera: Coccinellidae). J Insect Physiol 56:81–87PubMedCrossRefGoogle Scholar
  28. Riddick AW, Chen H (2013) Production of coleopteran predators. In: Morales-Ramos JA, Guadalupe Rojas M, Shapiro-Ilan DE (eds) Mass production of beneficial organisms. Elsevier Inc, London, UK, pp 17–55Google Scholar
  29. Specty O, Febvay G, Grenier S, Delobel B, Piotte C, Pageaux JF, Ferran A, Guillaud J (2003) Nutritional plasticity of the predatory ladybeetle Harmonia axyridis (Coleoptera: Coccinellidae): comparison between natural and substitution prey. Arch Insect Biochem Physiol 52:81–91PubMedCrossRefGoogle Scholar
  30. SPSS Inc. (2009) Guide to data analysis. SPSS Inc, Chicago, USAGoogle Scholar
  31. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20CrossRefGoogle Scholar
  32. van Lenteren JC, Tommasini M (2003) Mass production, storage, shipment and release of natural enemies. In: van Lenteren JC (ed) Quality control and the production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK, pp 181–189Google Scholar
  33. Vandekerkhove B, De Clercq P (2010) Pollen as an alternative or supplementary food for the mirid predator Macrolophus pygmaeus. Biol Control 53:238–242CrossRefGoogle Scholar
  34. Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Gobin B, Tirry L, De Clercq P (2014) Performance of the predatory mite Amblydromalus limonicus on factitious foods. BioControl 59:67–77CrossRefGoogle Scholar
  35. Weber DC, Lundgren JG (2011) Effect of prior diet on consumption and digestion of prey and non-prey food by adults of the generalist predator Coleomegilla maculata. Entomol Exp Appl 140:146–152CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2014

Authors and Affiliations

  • Sara Maes
    • 1
  • Tim Antoons
    • 1
  • Jean-Claude Grégoire
    • 2
  • Patrick De Clercq
    • 1
  1. 1.Laboratory of Agrozoology, Department of Crop ProtectionGhent UniversityGhentBelgium
  2. 2.Biological Control and Spatial Ecology LabUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations