BioControl

, Volume 59, Issue 4, pp 473–483 | Cite as

Biology and host specificity of Rhinusa pilosa, a recommended biological control agent of Linaria vulgaris

  • André Gassmann
  • Rosemarie De Clerck-Floate
  • Sharlene Sing
  • Ivo Toševski
  • Milana Mitrović
  • Olivier Krstić
Article

Abstract

Linaria vulgaris Mill. (Plantaginaceae), common or yellow toadflax, is a Eurasian short-lived perennial forb invasive throughout temperate North America. Rhinusa pilosa (Gyllenhal) (Coleoptera, Curculionidae) is a univoltine shoot-galling weevil found exclusively on L. vulgaris in Europe. Under no-choice test conditions, 13 non-native Linaria species exposed to R. pilosa were accepted for oviposition and most were found to be suitable, to varying degrees, for gall and larval development. Adult feeding and survival was minimal on native North American species in the plant tribe Antirrhineae which includes the target plant. In no-choice tests with 63 native North American species and 24 other non-target species outside Linaria, oviposition was limited to four native North American species. Only three larvae developed to the adult stage on Sairocarpus virga (A. Gray) D.A. Sutton, with no negative impact on plant growth. Risks to native flora from the release of R. pilosa are therefore expected to be minimal. The Technical Advisory Group for the Biological Control of Weeds (TAG—BCW) has recommended release of R. pilosa in September 2013.

Keywords

Common toadflax Yellow toadflax Curculionidae Host range tests Pre-release studies Biological control of weeds 

Supplementary material

10526_2014_9578_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 kb)
10526_2014_9578_MOESM2_ESM.doc (272 kb)
Supplementary material 2 (DOC 272 kb)

References

  1. Albach DC, Meudt HM, Oxelman B (2005) Piecing together the “new” Plantaginaceae. Am J Bot 92:297–315PubMedCrossRefGoogle Scholar
  2. Bakshi TS, Coupland RT (1960) Vegetative propagation in Linaria vulgaris. Can J Bot 38:243–249CrossRefGoogle Scholar
  3. Barnewall EC (2011) Plant-insect interactions between yellow toadflax, Linaria vulgaris, and a potential biocontrol agent, the gall-forming weevil, Rhinusa pilosa. M.Sc. Thesis, University of Lethbridge, Lethbridge, AB, CanadaGoogle Scholar
  4. Barnewall EC, De Clerck-Floate RA (2012) A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact 6:449–459CrossRefGoogle Scholar
  5. Boswell A (2013) Development of PCR-RFP and DNA barcoding chloroplast markers for yellow toadflax and Dalmatian toadflax. M.S. Thesis, Colorado State University, Fort Collins, CO, USAGoogle Scholar
  6. Briese DT (2005) Translating host-specificity test results into the real world: the need to harmonize the yin and yang of current testing procedures. Biol Control 35:208–214CrossRefGoogle Scholar
  7. Caldara R (2001) Phylogenetic analysis and higher classification of the tribe Mecinini (Coleoptera: Curculionidae, Curculioninae). Koleopterol Rundsch 71:171–203Google Scholar
  8. Caldara R, Desančić M, Gassmann A, Legarreta L, Emerson BC, Toševski I (2008) On the identity of Rhinusa hispida (Brullé) and its current synonyms (Coleoptera: Curculionidae). Zootaxa 1805:61–68Google Scholar
  9. Caldara RD, Sassi D, Toševski I (2010) Phylogeny of the weevil genus Rhinusa Stephens based on adult morphological characters and host plant information (Coleoptera: Curculionidae). Zootaxa 2627:39–56Google Scholar
  10. Chater AD, Valdés B, Webb DA (1972) Linaria Miller. In: Tutin TG, Heywood VH, Burgess NA, Walters SM, Webb DA (eds) Flora Europaea, vol 3. Cambridge University Press, Cambridge, UK, pp 226–236Google Scholar
  11. De Clerck-Floate RA, Harris P (2002) Linaria dalmatica (L.) Miller, Dalmatian toadflax (Scrophulariaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CABI Publishing, Wallingford, UK, pp 368–374Google Scholar
  12. De Clerck-Floate RA, McClay AS (2013) Linaria vulgaris Mill., yellow toadflax (Plantaginaceae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI Publishing, Wallingford, UK, pp 354–362Google Scholar
  13. De Clerck-Floate RA, Richards KW (1997) Pollination ecology and biocontrol: developing release strategies for seed feeding insects on Dalmatian toadflax. Acta Hortic 437(379):384Google Scholar
  14. De Clerck-Floate RA, Turner SC (2013) Linaria dalmatica (L.), Mill., Dalmatian toadflax (Plantaginaceae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI Publishing, Wallingford, UK, pp 342–353Google Scholar
  15. Estes D, Small RL (2008) Phylogenetic relationships of the monotypic genus Amphianthus (Plantaginaceae tribe Gratioleae) inferred from chloroplast DNA sequences. Syst Bot 33:176–182CrossRefGoogle Scholar
  16. Fernández-Mazuecos M, Blanco-Pastor JL, Vargas P (2013) A phylogeny of toadflaxes (Linaria Mill.) based on nuclear ITS sequences: systematic and evolutionary consequences. Int J Plant Sci 174:234–249CrossRefGoogle Scholar
  17. Gaskin JF, Bon M-C, Cock MJW, Cristofaro C, Biase A, De Clerck-Floate RA, Ellison CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011) Applying molecular-based approaches to classical biological control of weeds. Biol Control 58:1–21CrossRefGoogle Scholar
  18. Ghebrehiwet M, Bremer B, Thulin M (2000) Phylogeny of the tribe Antirrhineae (Scrophulariaceae) based on morphological and ndhF sequence data. Plant Syst Evol 220:223–239CrossRefGoogle Scholar
  19. Harris P (1963) Host specificity of Calophasia lunula (Hufn.) (Lepidoptera: Noctuidae). Can Ent 95:101–105CrossRefGoogle Scholar
  20. Hoffmann A (1958) Faune de France, vol. 62: Coleoptères, Curculionidae. In: Lechevalier P (ed) Paris, France, pp 1264–1311Google Scholar
  21. Lohse GA, Tischler T (1983) Die Kafer Mitteleuropas. Bd. 11: Curculionidae. In: Freude H, Harde KW, Lohse GA (eds) Goecke & Evers, Krefeld, Germany, p 260–271Google Scholar
  22. Mack RN (2003) Plant naturalizations and invasions in the eastern United States: 1634–1860. Ann Mo Bot Gard 90:77–90CrossRefGoogle Scholar
  23. McClay AS, De Clerck-Floate RA (2002) Linaria vulgaris Miller, common toadflax (Scrophulariaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CABI Publishing, Wallingford, UK, pp 375–382Google Scholar
  24. Mimeur J-M (1949) Contribution à l’ètude des zoocécidies du Maroc. Mémoire hors série de la Société des Sciences naturelles du Maroc Paul Lechevalier, Paris, FranceGoogle Scholar
  25. Nadeau L, King JR (1991) Seed dispersal and seedling establishment of Linaria vulgaris Mill. Can J Plant Sci 71:771–782CrossRefGoogle Scholar
  26. Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361PubMedCrossRefGoogle Scholar
  27. Saner MA, Clements DR, Hall MR, Doohan DJ, Crompton CW (1995) The biology of Canadian weeds. 105. Linaria vulgaris Mill. Can J Plant Sci 75:525–537CrossRefGoogle Scholar
  28. Sing SE, Peterson RKD, Weaver DK, Hansen RW, Markin GP (2005) A retrospective analysis of known and potential risks associated with exotic toadflax-feeding insects. Biol Control 35:276–287CrossRefGoogle Scholar
  29. Sutton DA (1988) A revision of the tribe Antirrhineae. British Museum (Natural History), London, UKGoogle Scholar
  30. Tank DC, Beardsley PM, Kelchner SA, Olmstead RG (2006) L.A.S. Johnson Review No. 7: review of the systematics of Scrophulariaceae s.l. and their current disposition. Aust Syst Bot 19:289–307CrossRefGoogle Scholar
  31. Turner MFS (2012) Viability and invasive potential of hybrids between yellow toadflax (Linaria vulgaris) and Dalmatian toadflax (Linaria dalmatica). Ph.D. Dissertation, Colorado State University. Fort Collins, CO, USAGoogle Scholar
  32. USDA, NRCS (2013) The PLANTS Database. National Plant Data Team, Greensboro, NC, USA. (http://plants.usda.gov. Accessed 10 Aug 2013)
  33. Vargas P, Rosselló JA, Oyama R, Güemes J (2004) Molecular evidence for naturalness of genera in the tribe Antirrhineae (Scrophulariaceae) and three independent evolutionary lineages form the New World and the Old. Plant Syst Evol 249:151–172CrossRefGoogle Scholar
  34. Vujnovic K, Wein RW (1997) The biology of Canadian weeds. 106. Linaria dalmatica (L.) Mill. Can J Plant Sci 77:483–491CrossRefGoogle Scholar
  35. Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211CrossRefGoogle Scholar
  36. Ward SM, Fleischmann CE, Turner MF, Sing SE (2009) Hybridization between invasive populations of Dalmatian toadflax (Linaria dalmatica) and yellow toadflax (Linaria vulgaris). Invasive Plant Sci Manage 2:369–378CrossRefGoogle Scholar
  37. Wilson LM, Sing SE, Piper GL, Hansen RW, De Clerck-Floate RA, MacKinnon DK, Randall CB (2005) Biology and biological control of dalmatian and yellow toadflax. USDA Forest Service, FHTET-05-13, Morgantown, USAGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2014

Authors and Affiliations

  • André Gassmann
    • 1
  • Rosemarie De Clerck-Floate
    • 2
  • Sharlene Sing
    • 3
  • Ivo Toševski
    • 1
    • 4
  • Milana Mitrović
    • 4
  • Olivier Krstić
    • 4
  1. 1.CABIDelémontSwitzerland
  2. 2.Agriculture and Agri-Food CanadaLethbridge Research CentreLethbridgeCanada
  3. 3.USDA Forest Service – Rocky Mountain Research StationBozemanUSA
  4. 4.Department of Plant PestsInstitute for Plant Protection and EnvironmentZemunSerbia

Personalised recommendations