Advertisement

BioControl

, Volume 59, Issue 3, pp 319–331 | Cite as

Efficacy of Trichoderma longibrachiatum in the control of Heterodera avenae

  • Shuwu Zhang
  • Yantai Gan
  • Bingliang XuEmail author
Article

Abstract

Trichoderma longibrachiatum can be used for the control of Heterodera avenae in crops, but the effectiveness and possible mechanisms are unknown. Here we determined the efficacy and the mechanism responsible for the nematode control in spring wheat (Triticum aestivum L.). Wheat seedlings inoculated with T. longibrachiatum at the concentrations from 1.5 × 104 to 1.5 × 108 spores ml−1 significantly increased plant height, root length, and plant biomass; decreased H. avenae infection in both rhizospheric soil and roots; and enhanced chlorophyll content, root activity, and the specific activities of resistance-related enzymes (peroxidase, polyphenol oxidase and phenylalanine ammonia lyase), compared to the control. Those reactions occurred soon after T. longibrachiatum inoculation and the effect reached the maximum 7–9 days after inoculation. Promoting competitive plant growth and inducing enzyme-trigged resistance serve as the main mechanism responsible for T. longibrachiatum against H. avenae. T. longibrachiatum can be considered an effective biocontrol agent against H. avenae in wheat.

Keywords

Trichoderma longibrachiatum Heterodera avenae Biological control Phenylalanine ammonia lyase Polyphenol oxidase Peroxidase 

Notes

Acknowledgments

This work was supported by Plant Protection Department of Gansu Agricultural University; Key Laboratory of Grassland Ecosystems, the Ministry of Education of China; Sino-U.S. Centers for Grazingland Ecosystems Sustainability; Gansu Hall of Province Farming Herd Biology Technology and Project of Education Department of Gansu Province; Grassland ecological System of Ministry of Education Ministry Key Laboratory Project (CY-GG-2006-013); Gansu Hall of Province Farming Herd Biology Technology (GNSW-2009-04) and Project of Education Department of Gansu Province (042-03).

References

  1. Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915PubMedCrossRefGoogle Scholar
  2. Alessandro V, Gabriella C, Ivana C, Dalia A, Giancarlo P (2012) Evaluation of Trichoderma harzianum strain T22 as biological control agent of Calonectria pauciramosa. BioControl 57:687–696CrossRefGoogle Scholar
  3. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295Google Scholar
  4. Bourne JM, Kerry BR, De Leij FAAM (1996) The importance of the host plant on the interaction between root-knot nematodes Meloidogyne spp. and the nematophagous fungus Pochonia chlamydosporia goddard. Biocontrol Sci Tech 6:539–548CrossRefGoogle Scholar
  5. Chen C, Belanger R, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Phytium aphanidermatum. Physiol Mol Plant P 56:13–23CrossRefGoogle Scholar
  6. De la Peña E, Echeverría SR, van der Putten HH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840PubMedCrossRefGoogle Scholar
  7. De Leij FAAM, Kerry BR (1993) Pochonia chlamydosporia biological control agent for Meloidogyne incognita and M. haplain pot and microplot tests. Nematogogica 39:115–126CrossRefGoogle Scholar
  8. Dinham B (2003) Growing vegetables in developing countries for local urban populations and export markets: problems confronting small-scale producers. Pest Manag Sci 59:575–582PubMedCrossRefGoogle Scholar
  9. Elad Y (2000) Trichoderma harzianum T39 preparation for biocontrol of plant diseases control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Sci Tech 10:499–507CrossRefGoogle Scholar
  10. Elad Y, Zimmand G, Zaqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332CrossRefGoogle Scholar
  11. Evans HC, Holmes KA, Thomas KA (2003) Mycobiota of an indigenous Theobroma species (Sterculiaceae) in Ecuador: assessing its potential for biological control of cocoa diseases. Mycol Prog 2:149–160CrossRefGoogle Scholar
  12. Ferraz S, de Freitas LG (2004) Use of antagonistic plants and natural products. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology–advances and prospectives. Nematode management and utilization, 2nd edn. CABI Publishing, Cambridge, UK, pp 931–958CrossRefGoogle Scholar
  13. Han Y, Wang Y, Bi JL, Yang XQ, Huang Y, Zhao X, Hu Y, Cai QN (2009) Constitutive and induced activities of defense-related enzymes in aphid resistant and aphid susceptible cultivars of wheat. J Chem Ecol 35:176–182PubMedCrossRefGoogle Scholar
  14. Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathol 96:190–194CrossRefGoogle Scholar
  15. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56CrossRefGoogle Scholar
  16. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10CrossRefGoogle Scholar
  17. Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathol 90:248–252CrossRefGoogle Scholar
  18. Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352CrossRefGoogle Scholar
  19. Li HL, Yuan HX, Sun JW, Fu B, Nian GL, Hou XS, Xing XP, Sun BJ (2010) First record of the cereal cyst nematode Heterodera filipjevi in China. Plant Dis 94:1505CrossRefGoogle Scholar
  20. Li ZJ, Xie XY, Zhang SQ, Liang YC (2011) Negative effects of oxytetracycline on wheat (Triticum aestivum L.) growth, root activity, photosynthesis, and chlorophyll contents. Agric Sci Chi 10:1545–1553CrossRefGoogle Scholar
  21. Long HB, Peng H, Huang WK, Wang GF, Gao BL, Moens M, Peng DL (2012) Identification and molecular characterization of a new β-1, 4-endoglucanase gene (Ha-eng-1a) in the cereal cyst nematode Heterodera avenae. Eur J Plant Pathol 134:391–400CrossRefGoogle Scholar
  22. Maciá-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401CrossRefGoogle Scholar
  23. Manzanilla-Lopez RH, Kenneth E, Bridge J (2004) Plant diseases caused by nematodes. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology advances and perspectives. Nematode management and utilization, 2nd edn. CAB International, Wallingford, UK, pp 646–647Google Scholar
  24. Manzanilla-López RH, Esteves I, Powers SJ, Kerry BR (2011) Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. Ann Appl Biol 159:118–129CrossRefGoogle Scholar
  25. Meira BE, Edna S, Yitzhak S (2006) Nematicidal activity of Chrysanthemum coronarium. Eur J Plant Pathol 114:427–433CrossRefGoogle Scholar
  26. Monfort E, Lopez-Llorca LV, Jansson HB, Salinas J, Park JO, Sivasithamparam K (2005) Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root rot. Soil Biol Biochem 37:1229–1235CrossRefGoogle Scholar
  27. Nicol JM, Rivoal R (2008) Global knowledge and its application for the integrated control and management of nematodes of wheat. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, The Netherlands, pp 251–252Google Scholar
  28. Nicol J, Rivoal R, Taylor S, Zaharieva M (2003) Global importance of cyst (Heterodera spp.) and lesion nematodes (Pratylenchus spp.) on cereals: distribution, yield loss, use of host resistance and integration of molecular tools. Nematol Monogr Perspect 2:1–19Google Scholar
  29. Nicol J, Io E, Lu I, Bolat N, Rivoal R (2007) The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approaches to its control. Commun Agric Appl Biol Sci 72:677–686PubMedGoogle Scholar
  30. Orth B, Frei R, Itin PH, Rinaldi MG, Speck B, Gratwohl A, Widmer AF (1996) Outbreak of invasive mycoses caused by Paecilomyces lilacinus from a contaminated skin lotion. Ann Intern Med 125:799–806PubMedCrossRefGoogle Scholar
  31. Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology and the potential for biocontrol. Ann Rev Phytopathol 23:23–54CrossRefGoogle Scholar
  32. Peng DL, Nicol JM, Li HM, Hou SY, Li HX, Chen SL, Ma P, Li HL, Riley IT (2009) Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. In: Riley IT, Nicol JM, Dababat AA (eds) Cereal cyst nematodes: status, research and outlook. CMMITY, Ankara, Turkey, pp 29–34Google Scholar
  33. Persmark L, Jansson HB (1997) Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbiol Ecol 22:303–312CrossRefGoogle Scholar
  34. Rivoal R, Cook R, Evaan K (1993) Plant parasitic nematodes in temperate agriculture. CAB International, Wallingford, UKGoogle Scholar
  35. Sahebani N, Hadavi N (2008) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem 40:2016–2020CrossRefGoogle Scholar
  36. Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Am Phytopathol Soc 91:687–693CrossRefGoogle Scholar
  37. Sharon E, Chet I, Viterbo A, Bar-Eyal M, Nagan H, Samuels GJ, Spiegel Y (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–258CrossRefGoogle Scholar
  38. Siddiqui Z, Akhtar MS (2008) Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloydogyne incognita and growth of tomato. Biocontrol Sci Tech 18:279–290CrossRefGoogle Scholar
  39. Siddiqui IA, Amer-Zareen M, Zaki MJ, Shaukat SS (2001) Use of Trichoderma species in the control of Meloidogyne javanica root knot nematode in okra and mungbean. Pak J Biol Sci 4:846–848CrossRefGoogle Scholar
  40. Smiley RW, Whittaker RG, Gourlie JA, Easley SA, Ingham RE (2005) Plant-parasitic nematodes associated with reduced wheat yield in Oregon: Heterodera avenae. J Nematol 37:297–307PubMedCentralPubMedGoogle Scholar
  41. Sorribas FJ, Ornat C, Galeano M, Verdejo-Lucas S (2003) Evaluation of a native and introduced isolate of Pochonia chlamydosporia against Meloidogyne javanica. Biocontrol Sci Tech 13:707–714CrossRefGoogle Scholar
  42. UNEP (2000) Methyl bromide alternatives for North African and Southern European countries. In: Proceedings from the Workshop on Methyl Bromide Alternatives for North African and Southern European Countries, United Nations Environment Programme, Rome, Italy, pp 8–10Google Scholar
  43. Vu TT, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852CrossRefGoogle Scholar
  44. Zhang FG, Yuan J, Yang XM, Cui YQ, Chen LH, Ran W, Shen QR (2013) Putative Trichoderma harzianum mutant promotes cucumber growth by enhanced production of indole acetic acid and plant colonization. Plant Soil 368:433–444CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2014

Authors and Affiliations

  1. 1.College of Grassland ScienceGansu Agricultural UniversityLanzhouChina
  2. 2.Agriculture and Agri-Food CanadaSwift CurrentCanada
  3. 3.Key Laboratory of Grassland Ecosystems, the Ministry of Education of ChinaLanzhouChina
  4. 4.Pratacultural Engineering Laboratory of Gansu ProvinceLanzhouChina
  5. 5.Sino-U.S. Centers for Grazingland Ecosystems SustainabilityLanzhouChina
  6. 6.Gansu Provincial Key Lab of Arid Land Crop ScienceLanzhouChina

Personalised recommendations