Advertisement

BioControl

, Volume 59, Issue 2, pp 185–194 | Cite as

Cold storage of the predatory mite Neoseiulus californicus is improved by pre-storage feeding on the diapausing spider mite Tetranychus urticae

  • Noureldin Abuelfadl GhazyEmail author
  • Katsumi Ohyama
  • Hiroshi Amano
  • Takeshi Suzuki
Article

Abstract

Low air temperature accompanied with high humidity is effective for long-term cold storage of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). To further improve this storage method, we investigated the effect of pre-storage nutrition on survival during storage and on post-storage quality in terms of survival, oviposition, and progeny viability. The predatory mite was fed from the egg to adult stage on the diapausing two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), non-diapausing spider mites, or Japanese pear pollen, Pyrus pyrifolia Nakai. Newly emerged N. californicus adult females and males were mated, and then both were stored at 7.5 °C and a vapor pressure deficit of 0.0 kPa for up to 75 days. Survival during storage and post-storage quality was significantly better with the diapausing spider mite diet than with the other diets. No effects on the survival or sex ratio of the progeny of the stored adults were observed, regardless of diet or storage duration. Providing diapausing spider mites as a pre-storage diet therefore significantly improves the long-term storage of N. californicus. We discuss the possibility that ingestion of the cryoprotectants, antioxidants, and energy reserves that are present in rich amounts in diapausing spider mites mitigates chilling injury.

Keywords

Cryoprotectants Natural enemies Oviposition Pollen Survival Vapor pressure deficit 

Notes

Acknowledgments

Authors are indebted to Prof. MH. Osakabe of Kyoto University for helpful discussion. We also thank anonymous reviewers for their helpful suggestions. This study was supported by Grants-in-Aid for JSPS Fellows [22-2650 and 25-03084].

References

  1. Amano H, Ishii Y, Kobori Y (2004) Pesticide susceptibility of two dominant phytoseiid mites, Neoseiulus californicus and N. womersleyi, in conventional Japanese fruit orchards (Gamasina: Phytoseiidae). J Acarol Soc Jap 13:65–70CrossRefGoogle Scholar
  2. Aucoin RR, Fields P, Lewis MA, Philogene BJR, Arnason JT (1990) The protective effects of antioxidants to a phototoxin-sensitive insect herbivore, Manduca sexta. J Chem Ecol 16:2913–2924CrossRefPubMedGoogle Scholar
  3. Bayram A, Ozcan H, Kornosor S (2005) Effect of cold storage on the performance of Telenomus busseolae Gahan (Hymenoptera: Scelionidae): an egg parasitoid of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). Biol Control 35:68–77CrossRefGoogle Scholar
  4. Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2009) Dehydration-induced cross tolerance of Belgica antarctica larvae to cold and heat is facilitated by trehalose accumulation. Comp Biochem Physiol A 152:518–523CrossRefGoogle Scholar
  5. Bourdais D, Vernon P, Krespi L, van Baaren J (2011) Behavioural consequences of cold exposure on males and females of Aphidius rhopalosiphi De Stephanie Perez (Hymenoptera: Braconidae). BioControl 57:349–360CrossRefGoogle Scholar
  6. Brodeur J, McNeil JN (1989) Biotic and abiotic factors involved in diapause induction of the parasitoid, Aphidius nigripes (Hymenoptera: Aphidiidae). J Insect Physiol 35:969–974CrossRefGoogle Scholar
  7. Broufas GD, Pappas ML, Koveos DS (2006) Effect of cold exposure and photoperiod on diapause termination of the predatory mite Euseius finlandicus (Acari: Phytoseiidae). Environ Entomol 35:1216–1221CrossRefGoogle Scholar
  8. Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77CrossRefGoogle Scholar
  9. Chang YF, Tauber MJ, Tauber CA (1995) Storage of the mass-produced predator Chrysoperla carnea (Neuroptera: Chrysopidae): influence of photoperiod, temperature, and diet. Environ Entomol 24:1365–1374Google Scholar
  10. Chen WL, Leopold RA, Harris MO (2008) Cold storage effects on maternal and progeny quality of Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Biol Control 46:122–132CrossRefGoogle Scholar
  11. Colinet H, Boivin G (2011) Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biol Control 58:83–95CrossRefGoogle Scholar
  12. Colinet H, Hance T, Vernon P, Bouchereau A, Renault D (2007) Does fluctuating thermal regime trigger free amino acid production in the parasitic wasp Aphidius colemani (Hymenoptera: Aphidiinae)? Comp Biochem Physiol A 147:484–492CrossRefGoogle Scholar
  13. Coudron TA, Ellersieck MR, Shelby KS (2007) Influence of diet on long-term cold storage of the predator Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Biol Control 42:186–195CrossRefGoogle Scholar
  14. Coudron TA, Popham HJR, Ellersieck MR (2009) Influence of diet on cold storage of the predator Perillus bioculatus (F.). BioControl 54:773–783CrossRefGoogle Scholar
  15. Denlinger DL (1991) Relationship between cold hardiness and diapause. In: Lee RE Jr, Denlinger DL (eds) Insects at low temperature. Chapman & Hall, New York, pp 174–198CrossRefGoogle Scholar
  16. Felton GW, Summers CB (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29:187–197CrossRefPubMedGoogle Scholar
  17. Fields PG, Fleurat-Lassard F, Lavenseau L, Febvay G, Peypelut L, Bonnot G (1998) The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera). J Insect Physiol 44:955–965CrossRefPubMedGoogle Scholar
  18. Ghazy NA, Suzuki T, Shah M, Amano H, Ohyama K (2012a) Using high relative humidity and low air temperature as a long-term storage strategy for the predatory mite Neoseiulus californicus (Gamasida: Phytoseiidae). Biol Control 60:241–246CrossRefGoogle Scholar
  19. Ghazy NA, Suzuki T, Shah M, Amano H, Ohyama K (2012b) Effect of long-term cold storage of the predatory mite Neoseiulus californicus at high relative humidity on post-storage biological traits. BioControl 57:635–641CrossRefGoogle Scholar
  20. Ghazy NA, Suzuki T, Amano H, Ohyama K (2012c) Effects of air temperature and water vapor pressure deficit on storage of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 58:111–120CrossRefPubMedGoogle Scholar
  21. Ghazy NA, Suzuki T, Amano H, Ohyama K (2013a) Humidity-controlled cold storage of Neoseiulus californicus (Acari: Phytoseiidae): effects on male survival and reproductive ability. J Appl Entomol 137:376–382CrossRefGoogle Scholar
  22. Ghazy NA, Suzuki T, Amano H, Ohyama K (2013b) Air temperature optimization for humidity-controlled cold storage of the predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Pest Manag Sci. doi: 10.1002/ps.3599 PubMedGoogle Scholar
  23. Gotoh T, Akizawa T, Watanabe M, Tsuchiya A, Shimazaki S (2005) Cold hardiness of Neoseiulus californicus and N. womersleyi (Acari: Phytoseiidae). J Acarol Soc Jap 14:93–103CrossRefGoogle Scholar
  24. Kawashima M, Jung C (2011) Effects of sheltered ground habitats on the overwintering potential of the predacious mite Neoseiulus californicus (Acari: Phytoseiidae) in apple orchards on mainland Korea. Exp Appl Acarol 55:375–388CrossRefPubMedGoogle Scholar
  25. Kehatm M, Wyndham M (1974) The effect of temperature and relative humidity extremes on the survival of the Rutherglen bug Nysius vinitor (Hemiptera: Lygaeidae). J Aust Entomol Soc 13:81–84CrossRefGoogle Scholar
  26. Khodayari S, Moharramipour S, Kamali K, Jalali Javaran M, Renault D (2012) Effects of acclimation and diapause on the thermal tolerance of the two-spotted spider mite Tetranychus urticae. J Thermal Biol 37:419–423CrossRefGoogle Scholar
  27. Khodayari S, Moharramipour S, Larvor V, Hidalgo K, Renault D (2013) Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8:e54025PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kostal V, Havelka J (2001) Low temperature storage of larvae and synchronization of adult emergence in the predatory midge Aphidoletes aphidimyza. Cryobiology 42:112–120CrossRefPubMedGoogle Scholar
  29. Kostal V, Simek P (1995) Dynamics of cold hardiness, supercooling and cryoprotectants in diapausing and non-diapausing pupae of the cabbage root fly, Delia radicum L. J Insect Physiol 41:627–634CrossRefGoogle Scholar
  30. Kostal V, Slachta M, Simek P (2001) Cryoprotective role of polyols independent of the increase in supercooling capacity in diapausing adults of Pyrrhocoris apterus (Heteroptera: Insecta). Comp Biochem Physiol B 130:365–374CrossRefGoogle Scholar
  31. Kostal V, Vambera J, Bastl J (2004) On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J Exp Biol 207:1509–1521CrossRefPubMedGoogle Scholar
  32. Kostal V, Simek P, Zahradnickova H, Cimlova J, Stetina T (2012) Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc Natl Acad Sci USA 109:3270–3274PubMedCentralCrossRefPubMedGoogle Scholar
  33. Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660CrossRefGoogle Scholar
  34. Lalouette L, Kostal V, Colinet H, Gagneul D, Renault D (2007) Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes. FEBS J 274:1759–1767CrossRefPubMedGoogle Scholar
  35. Lalouette L, Williams CM, Hervant F, Sinclair BJ, Renault D (2011) Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp Biochem Physiol A 158:229–234CrossRefGoogle Scholar
  36. Lee RE Jr (1991) Principles of insect low temperature tolerance. In: Lee RE Jr, Denlinger DL (eds) Insects at low temperature. Chapman & Hall, New York, USA, pp 17–46Google Scholar
  37. Leopold RA (1998) Cold storage of insects for integrated pest management. In: Hallman GJ, Denlinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, USA, pp 235–267Google Scholar
  38. Liu Z, Gong P, Wu K, Wei W, Sun J, Li D (2007) Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J Insect Physiol 53:1016–1026CrossRefPubMedGoogle Scholar
  39. Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146CrossRefGoogle Scholar
  40. Moreau R, Oliver D, Gourdoux L, Dutrieu J (1981) Carbohydrate metabolism in Pieris brassicae L. (Lepidoptera): variations during normal and diapausing development. Comp Biochem Physiol B 68:95–99CrossRefGoogle Scholar
  41. Morewood WD (1992) Cold storage of Phytoseiulus persimilis (Phytoseiidae). Exp Appl Acarol 13:231–236CrossRefGoogle Scholar
  42. Pitcher SA, Hoffmann MP, Gardner J, Wright MG, Kuhar TP (2002) Cold storage of Trichogramma ostriniae reared on Sitotroga cerealella eggs. BioControl 47:525–535CrossRefGoogle Scholar
  43. Riddick EW, Wu Z (2010) Potential long-term storage of the predatory mite Phytoseiulus persimilis. BioControl 55:639–644CrossRefGoogle Scholar
  44. Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SAL, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci USA 104:11130–11137PubMedCentralCrossRefPubMedGoogle Scholar
  45. Rivers DB, Lee RE Jr, Denlinger DL (2000) Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host, Sarcophaga crassipalpis. J Insect Physiol 46:99–106CrossRefPubMedGoogle Scholar
  46. Rojas RR, Leopold RA (1996) Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiology 33:447–458CrossRefGoogle Scholar
  47. Slachta M, Vambera J, Zahradnickova H, Kostal V (2002) Entering diapause is a prerequisite for successful cold-acclimation in adult Graphosoma lineatum (Heteroptera: Pentatomidae). J Insect Physiol 48:1031–1039CrossRefPubMedGoogle Scholar
  48. Somme L (1966) The effect of temperature, anoxia, or injection of various substances on haemolymph composition and supercooling in larvae of Anagasta kuehniella (Zell.). J Insect Physiol 12:1069–1083CrossRefGoogle Scholar
  49. Somme L (1999) The physiology of cold hardiness in terrestrial arthropods. Eur J Entomol 96:1–10Google Scholar
  50. Suzuki T (2012) Environmental engineering approaches toward sustainable management of spider mites. Insects 3:1126–1142CrossRefGoogle Scholar
  51. Tauber MJ, Tauber CA, Nechols JR, Obrycki JJ (1983) Seasonal activity of parasitoids: control by external, internal and genetic factors. In: Brown VK, Hodek I (eds) Diapause and life cycle strategies in insects. Dr W Junk Publishers, The Hague, The Netherlands, pp 87–108Google Scholar
  52. Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, Oxford, UKGoogle Scholar
  53. Urbanski JM, Aruda A, Armbruster P (2010) A transcriptional element of the diapause program in the Asian tiger mosquito, Aedes albopictus, identified by suppressive subtractive hybridization. J Insect Physiol 56:1147–1154CrossRefPubMedGoogle Scholar
  54. van der Geest LPS, Overmeer WPJ, van Zon AQ (1991) Cold-hardiness in the predatory mite Amblyseius potentillae (Acari: Phytoseiidae). Exp Appl Acarol 11:167–176CrossRefGoogle Scholar
  55. Veerman A (1974) Carotenoid metabolism in Tetranychus urticae Koch (Acari: Tetranychidae). Comp Biochem Physiol B 47:101–116CrossRefPubMedGoogle Scholar
  56. Veerman A (1985) Diapause. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, The Netherlands, pp 279–316Google Scholar
  57. Veerman A (1992) Diapause in phytoseiid mites: a review. Exp Appl Acarol 14:1–60CrossRefGoogle Scholar
  58. Yoder JA, Benoit JB, Denlinger DL, Rivers DB (2006) Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. J Insect Physiol 52:202–214CrossRefPubMedGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2013

Authors and Affiliations

  • Noureldin Abuelfadl Ghazy
    • 1
    • 2
    • 3
    • 4
    Email author
  • Katsumi Ohyama
    • 4
  • Hiroshi Amano
    • 1
  • Takeshi Suzuki
    • 5
  1. 1.Laboratory of Ecological Information, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityEl MansûraEgypt
  3. 3.Japan Society for the Promotion of ScienceTokyoJapan
  4. 4.Center for Environment, Health and Field SciencesChiba UniversityChibaJapan
  5. 5.College of AgricultureIbaraki UniversityAmiJapan

Personalised recommendations