Advertisement

BioControl

, Volume 58, Issue 3, pp 369–377 | Cite as

Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets

  • Duc Tung Nguyen
  • Dominiek Vangansbeke
  • Xin Lü
  • Patrick De ClercqEmail author
Article

Abstract

Development, survival and reproduction of the predatory mite Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) were assessed when fed on cattail pollen (Typha latifolia L.), dried fruit mite (Carpoglyphus lactis L.), or on two artificial diets. The basic artificial diet (AD1) was composed of honey, sucrose, tryptone, yeast extract, and egg yolk. This diet was enriched (AD2) by adding hemolymph from oak silkworm pupae (Antheraea pernyi (Guérin-Méneville)). Mites fed on C. lactis and AD2 had shorter immature and preoviposition periods than those fed on the other diets. The total number of deposited eggs was significantly higher for females fed on AD2 than for those maintained on the other diets. The intrinsic rate of increase (rm) of A. swirskii was highest on AD2 and C. lactis, followed by T. latifolia pollen, and AD1. In conclusion, the artificial diet AD2 supported development and reproduction of A. swirskii to the same extent as a factitious prey which is routinely used in the mass rearing of the phytoseiid. Our findings indicate the potential of artificial diets for the mass production of this economically important predatory mite.

Keywords

Phytoseiidae Amblyseius swirskii Life table Artificial diet Mass rearing 

Notes

Acknowledgments

We would like to thank Koppert B.V. and Biobest N.V. for support and for providing materials used in our experiments. The constructive comments from three anonymous reviewers and the handling editor are greatly appreciated. Nguyen Duc Tung is supported by a doctoral grant from the Vietnamese Ministry of Education and Training (MOET-VIED).

References

  1. Abou-Awad BA, Reda AS, Elsawi SA (1992) Effects of artificial and natural diets on the development and reproduction of two phytoseiid mites Amblyseius gossipi and Amblyseius swirskii (Acari: Phytoseiidae). Insect Sci Appl 13:441–445Google Scholar
  2. Abou-Awad BA, El-Sawaf BM, Abdel-Khalek AA (1999) Impact of two eriophyoid fig mites, Aceria ficus and Rhyncaphytoptus ficifoliae, as prey on postembryonic development and oviposition rate of the predacious mite Amblyseius swirskii. Acarologia 40:367–371Google Scholar
  3. Arthurs S, McKenzie CL, Chen JJ, Dogramaci M, Brennan M, Houben K, Osborne L (2009) Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol Control 49:91–96CrossRefGoogle Scholar
  4. Bolckmans KJF, van Houten YM (2006) Mite composition, use thereof, method for rearing the phytoseiid predatory mite Amblyseius swirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop. WO Patent WO/2006/057552Google Scholar
  5. Calvo J, Bolckmans K, Belda JE (2008) Controlling the tobacco whitefly Bemisia tabaci (Genn.) (Hom.: Aleyrodidae) in horticultural crops with the predatory mite Amblyseius swirskii (Athias-Henriot). J Insect Sci 8:4. http://www.insectscience.org/8.04/ref/abstract18.html
  6. Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 56:185–192CrossRefGoogle Scholar
  7. Chow A, Chau A, Heinz KM (2010) Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biol Control 53:188–196CrossRefGoogle Scholar
  8. Cônsoli FL, Parra JRP (1997) Development of an oligidic diet for in vitro rearing of Trichogramma galloi Zucchi and Trichogramma pretiosum Riley. Biol Control 8:172–176CrossRefGoogle Scholar
  9. De Clercq P, Arijs Y, van Meir T, van Stappen G, Sorgeloos P, Dewettinck K, Rey M, Grenier S, Febvay G (2005) Nutritional value of brine shrimp cysts as a factitious food for Orius laevigatus (Heteroptera: Anthocoridae). Biocontrol Sci Technol 15:467–479CrossRefGoogle Scholar
  10. El-Laithy AY (1998) Laboratory studies on growth parameters of three predatory mites associated with eriophyid mites in olive nurseries. J Plant Dis Prot 105:78–83Google Scholar
  11. El-Laithy AYM, Fouly AH (1992) Life table parameters of the two phytoseiid predators Amblyseius scutalis (Athias-Henriot) and A. swirskii A.-H. (Acari: Phytoseiidae) in Egypt. J Appl Entomol 113:8–12CrossRefGoogle Scholar
  12. Ferkovich S, Shapiro J (2004) Increased egg-laying in Orius insidiosus (Hemiptera: Anthocoridae) fed artificial diet supplemented with an embryonic cell line. Biol Control 31:11–15CrossRefGoogle Scholar
  13. Fidgett MJ, Stinson CSA (2008) Method for rearing predatory mites. WO Patent WO/2008/015393Google Scholar
  14. Grenier S, De Clercq P (2003) Comparison of artificially vs. naturally reared natural enemies and their potential for use in biological control. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK, pp 115–131CrossRefGoogle Scholar
  15. Kennett CE, Hamai J (1980) Oviposition and development in predaceous mites fed with artificial and natural diets (Acari: Phytoseiidae). Entomol Exp Appl 28:116–122CrossRefGoogle Scholar
  16. Kutuk H, Yigit A (2011) Pre-establishment of Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) using Pinus brutia (Ten.) (Pinales: Pinaceae) pollen for thrips (Thysanoptera: Thripidae) control in greenhouse peppers. Int J Acarol 37:95–101CrossRefGoogle Scholar
  17. Lee HS, Gillespie DR (2011) Life tables and development of Amblyseius swirskii (Acari: Phytoseiidae) at different temperatures. Exp Appl Acarol 53:17–27PubMedCrossRefGoogle Scholar
  18. Liu W, Xie Z, Xiao G, Zhou Y, Yang D, Li L (1979) Rearing of the Trichogramma dendrolimi in artificial diets. Acta Phytophyl Sin 6:17–24Google Scholar
  19. Liu ZC, Wang ZY, Sun YR, Liu JF, Yang WH (1988) Studies on culturing Anastatus sp., a parasitoid of Litchi stink bug, with artificial host eggs. In: Voegelé J, Waage JK, van Lenteren JC (eds) Trichogramma and other egg parasites, vol 43. Les Colloques de l’INRA, Paris, France, pp 353–360Google Scholar
  20. Lü X, Han S, Li L, Grenier S, De Clercq P (2012) The potential of trehalose to replace insect hemolymph in artificial media for Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae). Insect Sci. doi: 10.1111/j.1744-7917.2012.01566.x Google Scholar
  21. Maia ADN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518CrossRefGoogle Scholar
  22. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London, UKGoogle Scholar
  23. McMurtry JA, Scriven GT (1966) Effects of artificial foods on reproduction and development of four species of phytoseiid mites. Ann Entomol Soc Am 59:267–269Google Scholar
  24. Messelink GJ, van Steenpaal SEF, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51:753–768CrossRefGoogle Scholar
  25. Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379CrossRefGoogle Scholar
  26. Momen F, El-Saway S (1993) Biology and feeding behaviour of the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 34:199–204Google Scholar
  27. Nettles WC (1990) In vitro rearing of parasitoids: role of host factors in nutrition. Arch Insect Biochem Physiol 13:167–175CrossRefGoogle Scholar
  28. Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291PubMedCrossRefGoogle Scholar
  29. Nomikou M, Janssen A, Sabelis MW (2003) Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp Appl Acarol 31:15–26PubMedCrossRefGoogle Scholar
  30. Ogawa Y, Osakabe M (2008) Development, long-term survival, and the maintenance of fertility in Neoseiulus californicus (Acari: Phytoseiidae) reared on an artificial diet. Exp Appl Acarol 45:123–136PubMedCrossRefGoogle Scholar
  31. Onzo A, Houedokoho AF, Hanna R (2012) Potential of the predatory mite, Amblyseius swirskii to suppress the broad mite, Polyphagotarsonemus latus, on the gboma eggplant, Solanum macrocarpon. J Insect Sci 12:7. http://www.insectscience.org/12.7
  32. Park HH, Shipp L, Buitenhuis R (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirkii (Acari: Phytoseiidae) on tomato russet mite (Acari: Eriophyidae). J Econ Entomol 103:563–569PubMedCrossRefGoogle Scholar
  33. Park HH, Shipp L, Buitenhuis R, Ahn JJ (2011) Life history parameters of a commercially available Amblyseius swirskii (Acari: Phytoseiidae) fed on cattail (Typha latifolia) pollen and tomato russet mite (Aculops lycopersici). J Asia-Pacific Entomol 14:497–501CrossRefGoogle Scholar
  34. Ragusa S, Swirski E (1977) Feeding-habits, post-embryonic and adult survival, mating, virility and fecundity of predacious mite Amblyseius swirskii (Acarina: Phytoseiidae) on some coccids and mealybugs. Entomophaga 22:383–392CrossRefGoogle Scholar
  35. Riddick EW (2009) Benefits and limitations of factitious prey and artificial diets on life parameters of predatory beetles, bugs, and lacewings: a mini-review. BioControl 54:325–339CrossRefGoogle Scholar
  36. Shehata KK, Weismann L (1972) Rearing the predaceous mite Phytoseiulus persimilis Athias-Henriot on artificial diet (Acarina: Phytoseiidae). Biol Bratislava 27:609–615Google Scholar
  37. Strand M, Vinson S (1985) In vitro culture of Trichogramma pretiosum on an artificial medium. Entomol Exp Appl 39:203–209CrossRefGoogle Scholar
  38. Thompson S (1999) Nutrition and culture of entomophagous insects. Annu Rev Entomol 44:561–592PubMedCrossRefGoogle Scholar
  39. van Maanen R, Vila E, Sabelis MW, Janssen A (2010) Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52:29–34PubMedCrossRefGoogle Scholar
  40. Wimmer D, Hoffmann D, Schausberger P (2008) Prey suitability of western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci Technol 18:541–550CrossRefGoogle Scholar
  41. Xie ZN, Nettles WC, Morrison RK, Irie K, Vinson SB (1986) Effect of ovipositional stimulants and diets on the growth and development of Trichogramma pretiosum in vitro. Entomol Exp Appl 42:119–124CrossRefGoogle Scholar
  42. Xu XN, Enkegaard A (2010) Prey preference of the predatory mite, Amblyseius swirskii between first instar western flower thrips Frankliniella occidentalis and nymphs of the two-spotted spider mite Tetranychus urticae. J Insect Sci 10:149. http://www.insectscience.org/10.149 Google Scholar
  43. Zdarkova E, Strohalm J, Houska M (1999) Effect of high pressure on Carpoglyphus lactis L. (Acari: Carpoglyphidae). Czech J Food Sci 17:235–237Google Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2012

Authors and Affiliations

  • Duc Tung Nguyen
    • 1
    • 2
  • Dominiek Vangansbeke
    • 1
  • Xin Lü
    • 3
  • Patrick De Clercq
    • 1
    Email author
  1. 1.Laboratory of Agrozoology, Department of Crop ProtectionGhent UniversityGhentBelgium
  2. 2.Hanoi University of AgricultureHanoiVietnam
  3. 3.Guangdong Entomological InstituteGuangzhouChina

Personalised recommendations