, Volume 57, Issue 6, pp 751–758 | Cite as

Moroccan specimens of Microctonus aethiopoides spice our understanding of genetic variation in this internationally important braconid parasitoid of adult weevils

  • Cor J. Vink
  • Barbara I. P. Barratt
  • Craig B. Phillips
  • Diane M. Barton


Microctonus aethiopoides Loan (Hymenoptera: Braconidae) was introduced from Morocco to Australia and New Zealand for biological control of the lucerne pest, Sitona discoideus. Previous research has indicated that M. aethiopoides intraspecific genetic variation is more strongly associated with weevil host species than geographic origin. Cytochrome c oxidase subunit 1 (COI) sequences from parasitoids dissected from weevils collected during a survey of lucerne-growing areas in Morocco allowed us to further test this hypothesis. As found previously, there were two strong clades in M. aethiopoides with no geographical basis to this structure. Earlier research suggested that intraspecific variability within M. aethiopoides was related to weevil host genus (Sitona vs. Hypera), and the analysis confirmed that one of the clades corresponded strongly with the host Sitona discoideus. The other clade, however, previously characterised by parasitoids from Hypera postica also included parasitoids dissected from Charagmus spp., which is a sister genus to Sitona. It is suggested that food plant associations of the host weevils might have had an influence on the evolutionary history of the parasitoid.


Microctonus aethiopoides Parasitoid Genetic variation Cytochrome c oxidase subunit 1 (COI) Molecular phylogenetics Weevil hosts Sitona Charagmus Hypera 



We thank Prof. Mohammed Mouna and Mataame Abderrahmane (Institute Scientifique, Rabat, Morocco) for coordinating the Moroccan weevil collections, and carrying out the collections, respectively. CJV and CBP were funded by New Zealand’s Foundation for Research, Science and Technology through contract LINX0304, Ecosystems Bioprotection. BIPB and DMB were funded by New Zealand’s Foundation for Research, Science and Technology through contract CO2X0501, Better Border Biosecurity (


  1. Aeschlimann J-P (1983) Sources of importation, establishment and spread in Australia of Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a parasitoid of Sitona discoideus Gyllenhal (Coleoptera: Curculionidae). J Aust Entomol Soc 22:325–331CrossRefGoogle Scholar
  2. Aeschlimann J-P (1995) Lessons from post-release investigations in classical biological control: the case of Microctonus aethiopoides Loan (Hym., Braconidae) introduced into Australia and New Zealand for the biological control of Sitona discoideus Gyllenhal (Col., Curculionidae). In: Lynch JM (ed) Biological control: benefits and risks. Cambridge University, New York, USA, pp 75–83Google Scholar
  3. Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, UKGoogle Scholar
  4. Barlow ND, Goldson SL (1993) A modelling analysis of the successful biological control of Sitona discoideus (Coleoptera: Curculionidae) by Microctonus aethiopoides (Hymenoptera: Braconidae) in New Zealand. J Appl Ecol 30:165–179CrossRefGoogle Scholar
  5. Barratt BIP (2004) Microctonus parasitoids and New Zealand weevils: comparing laboratory estimates of host ranges to realized host ranges. In: van Driesche RG, Reardon R (eds) Assessing Host Ranges for Parasitoids and Predators Used for Classical Biological Control: A Guide to Best Practice. USDA Forest Service, Morgantown, USA, pp 103–120Google Scholar
  6. Barratt BIP, Evans AA, Ferguson CM, Barker G, McNeill MR, Phillips CB (1997) Laboratory nontarget host range of the introduced parasitoids Microctonus aethiopoides and M. hyperodae (Hymenoptera: Braconidae) compared with field parasitism in New Zealand. Environ Entomol 26:694–702Google Scholar
  7. Barratt BIP, Blossey B, Hokkanen HMT (2006) Post-release evaluation of non-target effects of biological control agents. In: Kuhlmann U, Bigler F, Babendreier D (eds) Environmental Impact of Arthropod Biological Control: Methods and Risk Assessment. CABI Bioscience, Wallingford, UK, pp 166–186CrossRefGoogle Scholar
  8. Barratt BIP, Ferguson CM, Bixley AS, Crook KE, Barton DM, Johnstone PD (2007) Field parasitism of nontarget weevil species (Coleoptera: Curculionidae) by the introduced biological control agent Microctonus aethiopoides Loan (Hymenoptera: Braconidae) over an altitude gradient. Environ Entomol 36:826–839PubMedCrossRefGoogle Scholar
  9. Barratt BIP, Oberprieler RG, Barton DM, Mouna M, Stevens M, Alonzo-Zarazaga M, Vink CJ, Ferguson CM (2012) Could native range research, and non-target host range in Australia have helped predict host range of Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a biological control agent for Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) in New Zealand? BioControl (in press)Google Scholar
  10. Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 54:373–390PubMedCrossRefGoogle Scholar
  11. Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA 91:6491–6495PubMedCrossRefGoogle Scholar
  12. Cullen JM, Hopkins DC (1982) Rearing, release and recovery of Microctonus aethiopoides Loan (Hymenoptera: Braconidae) imported for the control of Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) in south eastern Australia. J Aust Entomol Soc 21:279–284CrossRefGoogle Scholar
  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  14. Gerard PJ, Eden TM, Hardwick S, Mercer CF, Slay MWA, Wilson DJ (2007) Initial establishment of the Irish strain of Microctonus aethiopoides in New Zealand. N Z Plant Prot 60:203–208Google Scholar
  15. Gerard PJ, Wilson DJ, Eden TM (2011) Field release, establishment and initial dispersal of Irish Microctonus aethiopoides in Sitona lepidus populations in northern New Zealand pastures. BioControl 56:861–870CrossRefGoogle Scholar
  16. Hasegawa M, Kishino K, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  17. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  18. Hufbauer RA, Roderick GK (2005) Microevolution in biological control: Mechanisms, patterns, and processes. Biol Control 35:227–239CrossRefGoogle Scholar
  19. Hundsdoerfer AK, Rheinheimer J, Wink M (2009) Towards the phylogeny of the Curculionoidea (Coleoptera): Reconstructions from mitochondrial and nuclear ribosomal DNA sequences. Zool Anz 248:9–31CrossRefGoogle Scholar
  20. Kean JM, Barlow ND (2001) A spatial model for the successful biological control of Sitona discoideus by Microctonus aethiopoides. J Appl Ecol 38:162–169CrossRefGoogle Scholar
  21. Lanave C, Preparata G, Sacone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93PubMedCrossRefGoogle Scholar
  22. Loan CC (1975) A review of Haliday species of Microctonus, a neotype designation for M. aethiops, and a description of M. aethiopoides n. sp. (Hymenoptera: Braconidae, Euphorinae). Entomophaga 20:31–41CrossRefGoogle Scholar
  23. Loan C, Holdaway FG (1961) Microctonus aethiops (Nees) auctt. and Perilitus rutilus (Nees) (Hymenoptera: Braconidae), European parasites of Sitona weevils (Coleoptera: Curculionidae). Can Entomol 93:1057–1078CrossRefGoogle Scholar
  24. Lozier JD, Roderick GK, Mills NJ (2008) Evolutionarily significant units in natural enemies: Identifying regional populations of Aphidius transcaspicus (Hymenoptera: Braconidae) for use in biological control of mealy plum aphid. Biol Control 46:532–541CrossRefGoogle Scholar
  25. Lozier JD, Roderick GK, Mills NJ (2009) Molecular markers reveal strong geographic, but not host associated, genetic differentiation in Aphidius transcaspicus, a parasitoid of the aphid genus Hyalopterus. Bull Entomol Res 99:83–96PubMedCrossRefGoogle Scholar
  26. McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci USA 106:7083–7088PubMedCrossRefGoogle Scholar
  27. Morris MG (2002) True Weevils (Part I) Coleoptera: Curculionidae (Subfamilies Raymondionyminae to Smicronychinae). Royal Entomological Society and the Field Studies Council, Dorchester, UK, 149 ppGoogle Scholar
  28. Nylander JAA (2008) MrModeltest 2.3. Department of Systematic Zoology, Uppsala University, Uppsala, SwedenGoogle Scholar
  29. Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  30. Phillips CB, Iline II, Vink CJ, Winder LM, McNeill MR (2006) Methods to distinguish between the Microctonus aethiopoides strains that parasitise Sitona lepidus and Sitona discoideus. N Z Plant Prot 59:297–303Google Scholar
  31. Phillips CB, McNeill MR, Hardwick S, Vink CJ, Kean JM, Bewsell D, Ferguson CM, Winder LM, Iline II, Barron MC, Stuart B (2007) Clover root weevil in the South Island: detection, response and current distribution. N Z Plant Prot 60:209–216Google Scholar
  32. Phillips CB, Baird DB, Iline II, McNeill MR, Proffitt JR, Goldson SL, Kean JM (2008a) East meets West: Adaptive evolution of an insect introduced for biological control. J Appl Ecol 45:948–956CrossRefGoogle Scholar
  33. Phillips CB, Vink CJ, Blanchet A, Hoelmer KA (2008b) Hosts are more important than destinations: What genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae) means for foreign exploration for natural enemies. Mol Phylogenet Evol 49:467–476PubMedCrossRefGoogle Scholar
  34. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  35. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  36. Shaw SR (1988) Euphorine phylogeny: the evolution of diversity in host-utilization by parasitoid wasps (Hymenoptera: Braconidae). Ecol Entomol 13:323–335CrossRefGoogle Scholar
  37. Stufkens MAW, Farrell JA, Goldson SL (1987) Establishment of Microctonus aethiopoides, a parasitoid of the Sitona weevil in New Zealand. In: Popay AJ (ed) Proceedings of the 40th New Zealand Weed Pest Control Conference, Nelson, New Zealand, pp 31–32Google Scholar
  38. Sundaralingam S, Hower AA, Kim KC (2001) Host selection and reproductive success of French and Moroccan populations of the parasitoid, Microctonus aethiopoides (Hymenoptera: Braconidae). BioControl 46:25–41CrossRefGoogle Scholar
  39. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, UKGoogle Scholar
  40. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86Google Scholar
  41. Velázquez de Castro AJ, Alonso-Zarazaga MÁ, Outerelo R (2007) Systematics of Sitonini (Coleoptera: Curculionidae: Entiminae), with a hypothesis on the evolution of feeding habits. Syst Ent 32:312–331CrossRefGoogle Scholar
  42. Vink CJ, Phillips CB, Mitchell AD, Winder LM, Cane RP (2003) Genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae). Biol Control 28:251–264CrossRefGoogle Scholar
  43. Winder LM, Phillips CB, Lenney-Williams C, Cane RP, Paterson K, Vink CJ, Goldson SL (2005) Microsatellites and 16S sequences corroborate phenotypic evidence of trans-Andean variation in the parasitoid Microctonus hyperodae (Hymenoptera: Braconidae). Bull Entomol Res 95:289–298PubMedGoogle Scholar
  44. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A (2000) Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. In: Herendeen PS, Bruneau A (eds) Adv Legume Syst. Royal Botanic Gardens, Kew, UK, pp 277–298Google Scholar
  45. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314PubMedCrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2012

Authors and Affiliations

  • Cor J. Vink
    • 1
  • Barbara I. P. Barratt
    • 2
  • Craig B. Phillips
    • 1
  • Diane M. Barton
    • 2
  1. 1.AgResearch LincolnChristchurchNew Zealand
  2. 2.AgResearch InvermayMosgielNew Zealand

Personalised recommendations