, Volume 57, Issue 5, pp 611–618 | Cite as

Importance of temperature for the performance and biocontrol efficiency of the parasitoid Perilitus brevicollis (Hymenoptera: Braconidae) on Salix

  • Kwabena O. Baffoe
  • Peter Dalin
  • Göran Nordlander
  • Johan A. Stenberg


With the prospect of warmer temperatures as a consequence of ongoing climate change, it is important to investigate how such increases will affect parasitoids and their top-down suppression of herbivory in agroecosystems. Here we studied how the performance and biocontrol efficiency of the willow “bodyguard” Perilitus brevicollis Haliday (Hymenoptera: Braconidae) were affected at different constant temperatures (10, 15, 20, 25°C) when parasitizing a pest insect, the blue willow beetle (Phratora vulgatissima L., Coleoptera: Chrysomelidae). Parasitism did not reduce herbivory at all at 10°C, indicating poor biocontrol efficiency at low temperatures. At higher temperatures, however, parasitism reduced herbivory substantially, implying that biocontrol may be promoted by a warmer climate. Parasitoid performance (survival and development rate) generally increased with increasing temperature up to 20°C. The only exception was body size, which followed the temperature–size rule and decreased with increasing temperature. Our results indicate that a warmer climate may enhance the biocontrol of the blue willow beetle in environments that currently are cooler than the parasitoid’s optimal temperature for development.


Perilitus brevicollis Phratora vulgatissima Salix viminalis Temperature Climate change Biological control 



This study was funded by the Swedish Research Council Formas.

Supplementary material

10526_2012_9443_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 16 kb)


  1. Agboka K, Tounou AK, Al-Moaalem R, Poehling H-M, Raupach K, Borgemeister C (2004) Life-table study of Anagrus atomus, an egg parasitoid of the green leafhopper Empoasca decipiens, at four different temperatures. BioControl 49:261–275CrossRefGoogle Scholar
  2. Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, Chicago, USAGoogle Scholar
  3. Angilletta MJ Jr, Dunham AE (2003) The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342PubMedCrossRefGoogle Scholar
  4. Atkinson D (1994) Temperature and organism size—A biological law for ectotherms? Adv Ecol Res 25:1–58CrossRefGoogle Scholar
  5. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16CrossRefGoogle Scholar
  6. Björkman C, Bengtsson B, Häggström H (2000) Localized outbreak of a willow leaf beetle: Plant vigor or natural enemies? Popul Ecol 42:91–96CrossRefGoogle Scholar
  7. Björkman C, Dalin P, Eklund K (2003) Generalist natural enemies of a willow leaf beetle (Phratora vulgatissima): abundance and feeding habits. J Insect Behav 16:747–764CrossRefGoogle Scholar
  8. Brière JF, Pracros P (1998) Comparison of temperature-dependent growth models with the development of Lobesia botrana (Lepidoptera: Tortricidae). Environ Entomol 27:94–101Google Scholar
  9. Burnett T (1951) Effects of temperature and host density on the rate of increase of an insect parasite. Am Nat 85:337–352CrossRefGoogle Scholar
  10. Butler CD, Trumble JT (2010) Predicting population dynamics of the parasitoid Cotesia marginiventris (Hymenoptera: Braconidae) resulting from novel interactions of temperature and selenium. Biocontrol Sci Technnol 20:391–406CrossRefGoogle Scholar
  11. Coley PD (1998) Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim Change 39:455–472CrossRefGoogle Scholar
  12. Dalin P (2011) Diapause induction and termination in a commonly univoltine leaf beetle (Phratora vulgatissima). Insect Sci 18:443–450CrossRefGoogle Scholar
  13. Gilbert N, Raworth DA (1996) Insects and temperature—a general theory. Can Entomol 128:1–13CrossRefGoogle Scholar
  14. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton, USAGoogle Scholar
  15. Häggström H, Larsson S (1995) Slow larval growth on a suboptimal willow results in high predation mortality in the leaf beetle Galerucella lineola. Oecologia 104:308–315CrossRefGoogle Scholar
  16. Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126PubMedCrossRefGoogle Scholar
  17. Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: Can they be predicted? Agric For Entomol 3:233–240CrossRefGoogle Scholar
  18. IPCC (2007) Climate change 2007: the physical science basis. Summary for policymakers. WMO and UNEF, Geneva, SwitzerlandGoogle Scholar
  19. Jalali MA, Tirry L, De Clercq P (2010) Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl 55:261–269CrossRefGoogle Scholar
  20. Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268Google Scholar
  21. Landsberg J, Smith M (1992) A functional scheme for predicting the outbreak potential of herbivorous insects under global atmospheric change. Aust J Bot 40:565–577CrossRefGoogle Scholar
  22. Le Lann C, Wardziak T, van Baaren J, van Alphen JJM (2011) Thermal plasticity of metabolic rates linked to life-history traits and foraging behaviour in a parasitic wasp. Funct Ecol 25:641–651CrossRefGoogle Scholar
  23. Llácer E, Urbaneja A, Garrido A, Jacas J-A (2006) Temperature requirements may explain why the introduced parasitoid Quadrastichus citrella failed to control Phyllocnistis citrella in Spain. BioControl 51:439–452CrossRefGoogle Scholar
  24. Logan JA (1988) Toward an expert system for development of pest simulation models. Environ Entomol 17:359–376Google Scholar
  25. Maure F, Brodeur J, Ponlet N, Doyon J, Firlej A, Elguero É, Thomas F (2011) The cost of a bodyguard. Biol Lett 7:843–846PubMedCrossRefGoogle Scholar
  26. Peacock L, Herrick S, Brain P (1999) Spatio-temporal dynamics of willow beetle (Phratora vulgatissima) in short-rotation coppice willows grown as monocultures or a genetically diverse mixture. Agric For Entomol 1:287–296CrossRefGoogle Scholar
  27. Rueda LM, Patel KJ, Axtell RC, Stinner RE (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27:892–898PubMedGoogle Scholar
  28. Sandhu HS, Nuessly GS, Webb SE, Cherry RH, Gilbert RA (2010) Temperature-dependent development of Elasmopalpus lignosellus (Lepidoptera: Pyralidae) on sugarcane under laboratory conditions. Environ Entomol 39:1012–1020PubMedCrossRefGoogle Scholar
  29. Sibly RM, Atkinson D (1994) How rearing temperature affects optimal adult size in ectotherms. Funct Ecol 8:486–493CrossRefGoogle Scholar
  30. Steinbauer MJ, Kriticos DJ, Lukacs Z, Clarke AR (2004) Modelling a forest lepidopteran: phenological plasticity determines voltinism which influences population dynamics. Forest Ecol Manag 198:117–131CrossRefGoogle Scholar
  31. Stenberg JA (2012) Plant-mediated effects of different Salix species on the performance of the braconid parasitoid Perilitus brevicollis. Biol Control 60:54–58CrossRefGoogle Scholar
  32. Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52:296–306CrossRefGoogle Scholar
  33. Tun-Lin W, Burkot TR, Kay BH (2000) Effects of temperature and larval diet on development rates and survival of the Dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14:31–37PubMedCrossRefGoogle Scholar
  34. Wu GM, Barrette M, Boivin G, Brodeur J, Giraldeau LA, Hance T (2011) Temperature influences the handling efficiency of an aphid parasitoid through body size-mediated effects. Environ Entomol 40:737–742PubMedCrossRefGoogle Scholar
  35. Zandi-Sohani N, Shishehbor P (2011) Temperature effects on the development and fecundity of Encarsia acaudaleyrodis (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Homoptera: Aleyrodidae) on cucumber. BioControl 56:257–263CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2012

Authors and Affiliations

  • Kwabena O. Baffoe
    • 1
  • Peter Dalin
    • 1
  • Göran Nordlander
    • 1
  • Johan A. Stenberg
    • 1
  1. 1.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations