, Volume 57, Issue 2, pp 227–233 | Cite as

Role of molecular genetics in identifying ‘fine tuned’ natural enemies of the invasive Brazilian peppertree, Schinus terebinthifolius: a review

  • J. P. Cuda
  • L. R. Christ
  • V. Manrique
  • W. A. Overholt
  • G. S. Wheeler
  • D. A. Williams


Brazilian peppertree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), is a highly successful invasive species in the continental United States, Hawaiian archipelago, several Caribbean Islands, Australia, Bermuda, and a number of other countries worldwide. It also is one of only a few invasive intraspecific hybrids that has been well characterized genetically. The natural enemy complex of Brazilian peppertree includes two thrips and two psyllids that appear to be highly adapted to specific haplotypes or their hybrids. Successful biological control of Brazilian peppertree will require careful matching of the appropriate natural enemies with their host plant genotypes. The Brazilian peppertree model reviewed here could provide a useful framework for studying biological control agents on other invasive weed species that have exhibited intraspecific hybridization.


Intraspecific hybridization Host-plant genotypes Biological control Local adaptation Pseudophilothrips ichini Pseudophilothrips gandolfoi Calophya terebinthifolii Calophyalatiforceps Thysanoptera: Phlaeothripidae Hemiptera: Calophyidae Sapindales: Anacardiaceae 



We thank two anonymous reviewers for their comments on an earlier draft of this manuscript. These projects were supported by grants from the Florida Department of Environmental Protection, South Florida Water Management District, and Florida Exotic Pest Plant Council.


  1. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, OxfordGoogle Scholar
  2. Ayres DR, Ryan FJ, Grotkopp E, Bailey J, Gaskin J (2009) Tumbleweed (Salsola, section Kali) species and speciation in California. Biol Invasions 11:1175–1187CrossRefGoogle Scholar
  3. Baker HG (1965) Characteristics and modes of origins of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–172Google Scholar
  4. Bennett FD, Crestana L, Habeck DH, Berti-Filho E (1990) Brazilian peppertree—prospects for biological control. In: Delfosse ES (ed) Proceedings of the VII International Symposium on biological control of weeds, pp 6–11Google Scholar
  5. Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants–a hypothesis. J Ecol 83:887–889CrossRefGoogle Scholar
  6. Burckhardt D, Cuda JP, Manrique V, Diaz R, Overholt WA, Williams DA, Christ LR, Vitorino MD (2011) Calophya latiforceps, a new species of jumping plant lice (Hemiptera: Calophyidae) associated with Schinus terebinthifolius (Anacardiaceae) in Brazil. Florida Entomol 94:489–499Google Scholar
  7. Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443CrossRefGoogle Scholar
  8. Christ LR (2010) Biology, population growth, and feeding preferences of Calophya terebinthifolii (Hempitera: Psyllidae), a candidate for biological control of Brazilian Peppertree, Schinus terebinthifolius (Anacardiaceae). MS Thesis, University of Florida, USAGoogle Scholar
  9. Cox GW (2004) Alien species and evolution: the evolutionary ecology of exotic plants, animals, microbes and interacting native species. Island Press, Washington DC, USAGoogle Scholar
  10. Cuda JP, Habeck DH, Hight SD, Medal JC, Pedrosa-Macedo JH (2004) Brazilian peppertree, Schinus terebinthifolius: Sumac family-Anacardiaceae. In: Coombs E, Clark J, Piper G, Cofrancesco A (eds) Biological control of invasive plants in the United States. Oregon State University Press, Corvallis, pp 439–441Google Scholar
  11. Cuda JP, Ferritier AP, Manrique V, Medal JC (2006) Brazilian peppertree management plan for Florida: recommendations from the Brazilian Peppertree Task Force, Florida Exotic Pest Plant Council, 2nd edn.
  12. Cuda JP, Medal JC, Gillmore JL, Habeck DH, Pedrosa-Macedo JH (2009) Fundamental host range of Pseudophilothrips ichini sensu lato (Thysanoptera: Phlaeothripidae), a candidate biological control agent of Schinus terebinthifolius (Sapindales: Anacardiaceae) in the USA. Environ Entomol 38:1642–1652PubMedCrossRefGoogle Scholar
  13. Dlugosch KM, Parker IM (2008a) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol Lett 11:701–709PubMedCrossRefGoogle Scholar
  14. Dlugosch KM, Parker IM (2008b) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449PubMedCrossRefGoogle Scholar
  15. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Nat Acad Sci USA 97:7043–7050PubMedCrossRefGoogle Scholar
  16. Elton CS (1958) The ecology of invasion by animals and plants. T Metheun and Co., LondonGoogle Scholar
  17. Gaskin JF, Kazmer DJ (2009) Introgression between saltcedars (Tamarix chinensis and T. ramosissima) in the USA invasion. Biol Invasions 11:1121–1130CrossRefGoogle Scholar
  18. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Nat Acad Sci USA 99:11256–11259PubMedCrossRefGoogle Scholar
  19. Gaskin JF, Wheeler GS, Purcell MF, Taylor GS (2009) Molecular evidence of hybridization in Florida’s sheoak (Casuarina spp.) invasion. Mol Ecol 18:3216–3226PubMedCrossRefGoogle Scholar
  20. Geiger JH, Pratt PD, Wheeler GS (2011) Hybrid vigor for the invasive exotic Brazilian peppertree (Schinus terebinthifolius Raddi., Anacardiaceae) in Florida. Int J Plant Sci 172:655–663CrossRefGoogle Scholar
  21. Goolsby JA, de Barro PJ, Makinson JR, Pemberton RW, Hartley DM, Frohlich DR (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol Ecol 15:287–297PubMedCrossRefGoogle Scholar
  22. Harley KLS, Forno IW (1992) Biological control of weeds: a handbook for practitioners and students. Inkata Press, MelbourneGoogle Scholar
  23. Hasan S (1972) Specificity and host specialization of Puccinia chondrillina. Ann Appl Biol 72:257–263CrossRefGoogle Scholar
  24. Jain SK, Martins PS (1979) Ecological genetics of the colonizing ability of rose clover (Trifolium hirtum All). Am J Bot 66:361–366CrossRefGoogle Scholar
  25. Karban R (1989) Fine-scale adaptation of herbivorous thrips to individual host plants. Nature 340:60–61CrossRefGoogle Scholar
  26. Karban R, Strauss SY (1994) Colonization of new host plant individuals by locally adapted thrips. Ecography 17:82–87CrossRefGoogle Scholar
  27. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170CrossRefGoogle Scholar
  28. Keller SR, Sowell DR, Neiman M, Wolfe LM, Taylor DR (2009) Adaptation and colonization history affect the evolution of clines in two introduced species. New Phytol 183:678–690PubMedCrossRefGoogle Scholar
  29. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  30. Kliber A, Eckert CG (2005) Interaction between founder effect and selection during biological invasion in an aquatic plant. Evolution 59:1900–1913PubMedGoogle Scholar
  31. Kowarik I (1995) Time lags in biological invasion with regard to the success and failure of alien species. In: Pysek P, Rejmánek M, Wade M (eds) Plant invasions-general aspects and special problems. The Netherlands, SPB Academic Publishing, Amsterdam, pp 15–38Google Scholar
  32. Krauss NL (1963) Biological control investigations on Christmas berry (Schinus terebinthifolius) and Emex (Emex spp.). Proc Hawaii Entomol Soc 18:281–287Google Scholar
  33. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Nat Acad Sci USA 104:3883–3888PubMedCrossRefGoogle Scholar
  34. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  35. MacArthur RH (1970) Species packing and competitive equilibrium for many species. Theor Popul Biol 1:1–11PubMedCrossRefGoogle Scholar
  36. Manrique V, Cuda JP, Overholt WA, Williams D, Wheeler G (2008) Effect of host-plant genotypes on the performance of two candidate biological control agents of Brazilian peppertree in Florida. Biol Control 47:167–171CrossRefGoogle Scholar
  37. Maron JL, Vila M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280CrossRefGoogle Scholar
  38. Maron JL, Elmendorf SC, Vilà M (2007) Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Evolution 61:1912–1924PubMedCrossRefGoogle Scholar
  39. Morton JF (1978) Brazilian pepper–its impact on people, animals and the environment. Econ Bot 32:353–359CrossRefGoogle Scholar
  40. Mound LA, Wheeler GS, Williams DA (2010) Resolving cryptic species with morphology and DNA; thrips as a potential biocontrol agent of Brazilian peppertree, with a new species and overview of Pseudophilothrips (Thysanoptera). Zootaxa 2432:59–68Google Scholar
  41. Nerhling H (1944) My garden in Florida. American Eagle, EsteroGoogle Scholar
  42. Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Cons Biol 17:59–72CrossRefGoogle Scholar
  43. Pemberton RW, Liu H (2009) Marketing time predicts naturalization of horticultural plants. Ecology 90:69–80PubMedCrossRefGoogle Scholar
  44. Pimentel D (2002) Biological invasions: economic and environmental costs of alien plant, animal and microbe species, CRC Press LLC, Boca RatonGoogle Scholar
  45. Prati D, Bossdorf O (2004) Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am J Bot 91:285–288PubMedCrossRefGoogle Scholar
  46. Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294PubMedCrossRefGoogle Scholar
  47. Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993PubMedCrossRefGoogle Scholar
  48. Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165PubMedCrossRefGoogle Scholar
  49. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Ann Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  50. Schierenbeck K, Ellstrand N (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105CrossRefGoogle Scholar
  51. Schmitz DC, Simberloff D, Hofstetter RH, Haller W, Sutton D (1997) The ecological impact of nonindigenous species. In: Simberloff D, Schmitz DC, Brown TC (eds) Strangers in paradise: impact and management of nonindigenous species in Florida. Island Press, Washington DC, pp 9–61Google Scholar
  52. Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90:1055–1062PubMedCrossRefGoogle Scholar
  53. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  54. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360PubMedCrossRefGoogle Scholar
  55. Travis SE, Marburger JE, Windels S, Kubátová B (2010) Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. J Ecol 98:7–16CrossRefGoogle Scholar
  56. Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc Roy Soc B 278:2–8CrossRefGoogle Scholar
  57. Williams JR (1954) The biological control of weeds In: Rept Sixth Commonwealth Entomol Congress, London, UK, pp 95–98Google Scholar
  58. Williams DA, Overholt WA, Cuda JP, Hughes CR (2005) Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida. Mol Ecol 14:3643–3656PubMedCrossRefGoogle Scholar
  59. Williams DA, Muchugu E, Overholt WA, Cuda JP (2007) Colonization patterns of the invasive Brazilian peppertree, Schinus terebinthifolius, in Florida. Heredity 98:284–293PubMedCrossRefGoogle Scholar
  60. Williamson M (1996) Biological invasions. Chapman & Hall, LondonGoogle Scholar
  61. Workman R (1979) History of Schinus in Florida. In: Workman R (ed) Schinus—technical proceedings of techniques for control of Schinus in South Florida: a workshop for natural area managers. The Sanibel-Captiva Conservation Foundation Inc., Sanibel, pp 3–6Google Scholar
  62. Xu CY, Julien MH, Fatemi M, Girod C, Van Klinken RD, Gross CL, Novak SJ (2010) Phenotypic divergence during the invasion of Phyla canescens in Australia and France: evidence for selection-driven evolution. Ecol Lett 13:32–44PubMedCrossRefGoogle Scholar
  63. Yoshioka ER, Markin GP (1991) Efforts of biological control of Christmas Berry Schinus terebinthifolius in Hawaii. In: Center T, Doren RF, Hofstetter RL, Myers RL, Whiteaker LD (eds) Proceedings, Symposium of Exotic Pest Plants, 2–4 November 1988, Miami, Florida, pp 377–385Google Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2011

Authors and Affiliations

  • J. P. Cuda
    • 1
  • L. R. Christ
    • 1
  • V. Manrique
    • 2
  • W. A. Overholt
    • 2
  • G. S. Wheeler
    • 3
  • D. A. Williams
    • 4
  1. 1.Entomology and Nematology DepartmentUniversity of FloridaGainesvilleUSA
  2. 2.Biological Control Research and Containment LaboratoryUniversity of FloridaFt. PierceUSA
  3. 3.USDA-ARS Invasive Plant Research LaboratoryFort LauderdaleUSA
  4. 4.Department of BiologyTexas Christian UniversityFort WorthUSA

Personalised recommendations