BioControl

, Volume 57, Issue 3, pp 397–404 | Cite as

Mitochondrial DNA diversity of Cleruchoides noackae (Hymenoptera: Mymaridae): a potential biological control agent for Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae)

  • R. L. Nadel
  • M. J. Wingfield
  • M. C. Scholes
  • S. A. Lawson
  • A. E. Noack
  • S. Neser
  • B. Slippers
Article

Abstract

Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae) is a native Australian Eucalyptus sap-feeding insect that has become invasive and seriously damaging to commercially grown Eucalyptus in the Southern Hemisphere. Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome c oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native C. noackae populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that C. noackae has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for C. noackae is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of T. peregrinus. If implemented as a biological control agent, this factor will need to be considered in collecting and releasing C. noackae.

Keywords

Egg parasitoid Hemiptera Hymenoptera Laboratory rearing Mymaridae Thaumastocoridae 

References

  1. Angalet GW, Tropp JM, Eggert AN (1979) Coccinella septempunctata in the United States: recolonizations and notes on its ecology. Environ Entomol 8:896–901Google Scholar
  2. Burgess T, Wingfield MJ (2002) Impact of fungal pathogens in natural forest ecosystems: a focus on Eucalyptus. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Microorganisms in plant conservation and biodiversity. Kluwer, Dordrecht, pp 285–306Google Scholar
  3. Cai YW, Cheng XY, Xu RM, Duan DH, Kirkendall LR (2008) Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions. Insect Sci 15:291–301CrossRefGoogle Scholar
  4. Chen P, Ye H (2008) Relationship among five populations of Bactrocera dorsalis based on mitochondrial DNA sequences in western Yunnan China. J Appl Entomol 132:530–537CrossRefGoogle Scholar
  5. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  6. Cognato AI (2006) Standard percent DNA sequence differences for insects does not predict species boundaries. J Econ Entomol 99:1037–1045PubMedCrossRefGoogle Scholar
  7. Darling JA, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9:751–765CrossRefGoogle Scholar
  8. Dasmahapatra KK, Mallet J (2006) DNA barcodes: recent successes and future prospects. Heredity 97:254–255PubMedCrossRefGoogle Scholar
  9. de León JH, Logarzo GA, Triapitsyn SV (2008) Molecular characterization of Gonatocerus tuberculifemur (Ogloblin) (Hymenoptera: Mymaridae), a prospective Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) biological control candidate agent from South America: divergent clades. Bull Entomol Res 98:97–108PubMedGoogle Scholar
  10. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  11. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  12. Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007) Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. J Appl Entomol 131:225–240CrossRefGoogle Scholar
  13. Grevstad FS (1999) Factors influencing the chance of population establishment: implications for release strategies in biocontrol. Ecol Appl 9:1439–1447CrossRefGoogle Scholar
  14. Hebert PDN, Penton EH, Burns JM, Janzens DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817PubMedCrossRefGoogle Scholar
  15. Hoelmer KA, Kirk AA (2005) Selecting arthropod biological control agents against arthropod pests: Can the science be improved to decrease the risk of releasing ineffective agents? Biol Control 34:255–264CrossRefGoogle Scholar
  16. Horn A, Roux-Morabito G, Lieutier F, Kerdelhue C (2006) Phylogeographic structure and past history of the circum-Mediterranean species Tomicus destruens Woll. (Coleoptera: Scolytinae). Mol Ecol 15:1603–1615PubMedCrossRefGoogle Scholar
  17. Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589PubMedGoogle Scholar
  18. Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239CrossRefGoogle Scholar
  19. Jacobs DH, Neser S (2005) Thaumastocoris australicus Kirkaldy (Heteroptera: Thaumastocoridae): a new insect arrival in South Africa, damaging to Eucalyptus trees. S Afr J Sci 101:233–236Google Scholar
  20. Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  21. Lin N, Huber JT, La Salle J (2007) The Australian genera of Mymaridae (Hymenoptera: Chalcidoidea). Zootaxa 1596:3–111Google Scholar
  22. Lloyd CJ, Hufbauer RA, Jackson A, Nissen SJ, Norton AP (2005) Pre- and post-introduction patterns in neutral genetic diversity in the leafy spurge gall midge, Spurgia capitigena (Bremi) (Diptera: Cecidomyiidae). Biol Control 33:153–164CrossRefGoogle Scholar
  23. Loch AD, Floyd RB (2001) Insect pests of Tasmanian blue gum, Eucalyptus globulus globulus, in south-western Australia: History, current perspectives and future prospects. Austral Ecol 26:458–466CrossRefGoogle Scholar
  24. Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Systematic Biol 57:809–813CrossRefGoogle Scholar
  25. Nadel RL, Slippers B, Scholes MC, Lawson SA, Noack AE, Wilcken CF, Bouvet JP, Wingfield MJ (2010) DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Biol Invasions 12:1067–1077CrossRefGoogle Scholar
  26. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  27. Noack AE (2002) Thaumastocoridae—an investigation. Retrieved from http://pandora.nla.gov.au/pan/32881/20030204/www.thaumastocoridae.org/index.html. Accessed 10 January 2009
  28. Noack AE, Coviella CE (2006) Thaumastocoris australicus Kirkaldy (Hemiptera: Thaumastocoridae): first record of this invasive pest of Eucalyptus in the Americas. Gen Appl Entomol 35:13–15Google Scholar
  29. Roderick GK (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annu Rev Entomol 41:325–352PubMedCrossRefGoogle Scholar
  30. Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Genet 4:889–899PubMedCrossRefGoogle Scholar
  31. Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  32. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, NJ, pp 365–386Google Scholar
  33. Sha Z, Zhu C, Murphy RW, La Salle J, Huang D (2006) Mitochondrial phylogeography of a leafminer parasitoid, Diglyphus isaea (Hymenoptera: Eulophidae) in China. Biol Control 38:380–389CrossRefGoogle Scholar
  34. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: Molecular Evolutionary Genetic Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  36. Vandewoestijne S, Baguette M, Brakefield PM, Saccheri IJ (2004) Phylogeography of Aglais urticae (Lepidoptera) based on DNA sequences of the mitochondrial COI gene and control region. Mol Phylogenet Evol 31:630–646PubMedCrossRefGoogle Scholar
  37. Vaughn TT, Antolin MF (1998) Population genetics of an opportunistic parasitoid in an agricultural landscape. Heredity 80:152–162CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2011

Authors and Affiliations

  • R. L. Nadel
    • 1
    • 2
  • M. J. Wingfield
    • 1
  • M. C. Scholes
    • 3
  • S. A. Lawson
    • 4
  • A. E. Noack
    • 5
  • S. Neser
    • 1
  • B. Slippers
    • 1
  1. 1.Department of Genetics, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
  2. 2.Institute for Commercial Forestry Research (ICFR)Scottsville, PietermaritzburgSouth Africa
  3. 3.School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandWitsSouth Africa
  4. 4. Department of EmploymentEconomic Development & Innovation, and University of the Sunshine CoastBrisbaneAustralia
  5. 5.Faculty of Agriculture, Food and Natural ResourcesUniversity of SydneySydneyAustralia

Personalised recommendations