BioControl

, Volume 56, Issue 4, pp 409–428 | Cite as

Ecological genetics of invasive alien species

  • L.-J. Lawson Handley
  • A. Estoup
  • D. M. Evans
  • C. E. Thomas
  • E. Lombaert
  • B. Facon
  • A. Aebi
  • H. E. Roy
Article

Abstract

There is growing realisation that integrating genetics and ecology is critical in the context of biological invasions, since the two are explicitly linked. So far, the focus of ecological genetics of invasive alien species (IAS) has been on determining the sources and routes of invasions, and the genetic make-up of founding populations, which is critical for defining and testing ecological and evolutionary hypotheses. However an ecological genetics approach can be extended to investigate questions about invasion success and impacts on native, recipient species. Here, we discuss recent progress in the field, provide overviews of recent methodological advances, and highlight areas that we believe are of particular interest for future research. First, we discuss the main insights from studies that have inferred source populations and invasion routes using molecular genetic data, with particular focus on the role of genetic diversity, adaptation and admixture in invasion success. Second, we consider how genetic tools can lead to a better understanding of patterns of dispersal, which is critical to predicting the spread of invasive species, and how studying invasions can shed light on the evolution of dispersal. Finally, we explore the potential for combining molecular genetic data and ecological network modelling to investigate community interactions such as those between predator and prey, and host and parasite. We conclude that invasions are excellent model systems for understanding the role of natural selection in shaping phenotypes and that an ecological genetics approach offers great potential for addressing fundamental questions in invasion biology.

Keywords

Invasive alien species Ecological genetics Molecular ecology Invasion routes Dispersal Community interactions 

References

  1. Aebi A, Zindel R (2010) What can endosymbionts tell about the Harmonia axyridis invasion? Benefits and risks of exotic biological control agents. IOBC/WPRS Bull 58:5–6Google Scholar
  2. Aebi A, Brown PJB, De Clercq P, Hautier L, Howe A, Ingels B, Ravn H-P, Sloggett JJ, Zindel R, Thomas A (2011) Measuring arthropod intraguild predation in the wild. BioControl. doi:10.1007/s10526-011-9378-2
  3. Amsellem L, Noyer JL, Le Bourgeois T, Hossaert-McKey M (2000) Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:443–455PubMedCrossRefGoogle Scholar
  4. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830CrossRefGoogle Scholar
  6. Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035PubMedPubMedCentralGoogle Scholar
  7. Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol 19:2609–2625PubMedCrossRefGoogle Scholar
  8. Bonsall MB, Sait SM, Hails RS (2005) Invasion and dynamics of covert infection strategies in structured insect-pathogen populations. J Anim Ecol 74:464–474CrossRefGoogle Scholar
  9. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11PubMedCrossRefGoogle Scholar
  10. Burton OJ, Phillips BL, Travis JMJ (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 13:1210–1220PubMedCrossRefGoogle Scholar
  11. Chacón JM, Landis DA, Heimpel GE (2008) Potential for biotic interference of a classical biological control agent of the soybean aphid. Biol Control 46:216–225CrossRefGoogle Scholar
  12. Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627PubMedCrossRefGoogle Scholar
  13. Ciosi M, Miller NJ, Toepfer S, Estoup A, Guillemaud T (2010) Stratified dispersal and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera. Evol Appl 4:54–70PubMedPubMedCentralCrossRefGoogle Scholar
  14. Colla SR, Otterstatter MC, Gegear RJ, Thomson JD (2006) Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol Conserv 129:461–467CrossRefGoogle Scholar
  15. Cornman SR, Schatz MC, Johnston SJ, Chen YP, Pettis J, Hunt G, Bourgeois L, Elsik C, Anderson D, Grozinger CM, Evans JD (2010) Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genomics 11:602PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P-L, Briese T, Hornig M, Geiser DM, Martinson V, van Engelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287PubMedCrossRefGoogle Scholar
  18. Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257PubMedCrossRefGoogle Scholar
  19. Csillery K, Blum MGB, Gaggiotti OE, Francois O (2010) Approximate Bayesian Computation (ABC) in practice. Trends Ecol Evol 25:410–418PubMedCrossRefGoogle Scholar
  20. Currat M, Ray N, Excoffier L (2004) SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity. Mol Ecol Notes 4:139–142CrossRefGoogle Scholar
  21. Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007PubMedCrossRefGoogle Scholar
  22. Davis ES, Murray TE, Fitzpatrick Ú, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935PubMedCrossRefGoogle Scholar
  23. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449PubMedCrossRefGoogle Scholar
  25. Downie DA (2002) Locating the sources of an invasive pest, grape phylloxera, using a mitochondrial DNA gene genealogy. Mol Ecol 11:2013–2026PubMedCrossRefGoogle Scholar
  26. Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375CrossRefGoogle Scholar
  27. Eales J, Thorpe RS, Malhotra A (2010) Colonization history and genetic diversity: adaptive potential in early stage invasions. Mol Ecol 19:2858–2869PubMedCrossRefGoogle Scholar
  28. Epperson BK, McRae BH, Scribner K, Cushman SA, Rosenberg MS, Fortin MJ, James PMA, Murphy M, Manel S, Legendre P, Dale MRT (2010) Utility of computer simulations in landscape genetics. Mol Ecol 19:3549–3564PubMedCrossRefGoogle Scholar
  29. Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130PubMedCrossRefGoogle Scholar
  30. Estoup A, Baird SJE, Ray N, Currat M, Cornuet JM, Santos F, Beaumont MA, Excoffier L (2010) Combining genetic, historical and geographical data to reconstruct the dynamics of bioinvasions: application to the cane toad Bufo marinus. Mol Ecol Resour 10:886–901PubMedCrossRefGoogle Scholar
  31. Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351PubMedCrossRefGoogle Scholar
  32. Facon B, David P (2006) Metapopulation dynamics and biological invasions: a spatially explicit model applied to a freshwater snail. Am Nat 168:769–783PubMedCrossRefGoogle Scholar
  33. Facon B, Pointier JP, Glaubrecht M, Poux C, Jarne P, David P (2003) A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails. Mol Ecol 12:3027–3039PubMedCrossRefGoogle Scholar
  34. Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. J Evol Biol 18:524–535PubMedCrossRefGoogle Scholar
  35. Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135PubMedCrossRefGoogle Scholar
  36. Facon B, Pointier JP, Jarne P, Sarda V, David P (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367PubMedCrossRefGoogle Scholar
  37. Facon B, Crespin L, Loiseau A, Lombaert E, Magro A, Estoup A (2010) Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evol Appl 4:71–88PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fisher RA (1930) The genetical theory of natural selection. Clarendon, OxfordCrossRefGoogle Scholar
  39. Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:353–369Google Scholar
  40. Ford E (1964) Ecological genetics. Methuen, LondonGoogle Scholar
  41. Galbreath J, Smith JE, Terry RS, Becnel JJ, Dunn AM (2004) Invasion success of Fibrillanosema crangonycis: a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. Int J Parasitol 34:235–244CrossRefGoogle Scholar
  42. Genton B, Shykoff J, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285PubMedCrossRefGoogle Scholar
  43. Gilbert M, Gregoire JC, Freise JF, Heitland W (2004) Long-distance dispersal and human population density allow the prediction of invasive patterns in the horse chestnut leafminer Cameraria ohridella. J Anim Ecol 73:459–468CrossRefGoogle Scholar
  44. Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663PubMedCrossRefGoogle Scholar
  45. Goodacre SL, Martin OY, Bonte D, Hutchings L, Woolley C, Ibrahim K, Thomas CFG, Hewitt GM (2009) Microbial modification of host long-distance dispersal capacity. BMC Biol 7:32PubMedPubMedCentralCrossRefGoogle Scholar
  46. Goodnight CJ (1987) On the effect of founder events on epistatic genetic variance. Evolution 41:80–91CrossRefGoogle Scholar
  47. Goodnight CJ (1988) Epistasis and the effect of founder events on the additive genetic variance. Evolution 42:441–454CrossRefGoogle Scholar
  48. Guillemaud T, Beaumont MA, Ciosi M, Cornuet JM, Estoup A (2010) Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity 104:88–99PubMedCrossRefGoogle Scholar
  49. Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280PubMedPubMedCentralCrossRefGoogle Scholar
  50. Guillot G, Mortier F, Estoup A (2005b) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  51. Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756PubMedCrossRefGoogle Scholar
  52. Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc B Biol Sci 272:2449–2456CrossRefGoogle Scholar
  53. Hänfling B, Carvalho GR, Brandl R (2002) mtDNA sequences and possible invasion pathways of the Chinese mitten crab. Mar Ecol Prog Ser 238:307–310CrossRefGoogle Scholar
  54. Hanski I, Breuker CJ, Schops K, Setchfield R, Nieminen M (2002) Population history and life history influence the migration rate of female Glanville fritillary butterflies. Oikos 98:87–97CrossRefGoogle Scholar
  55. Harper GL, King RA, Dodd CS, Harwood JD, Glen DM, Bruford MW, Symondson WOC (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14:819–827PubMedCrossRefGoogle Scholar
  56. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101CrossRefGoogle Scholar
  57. Hatcher MJ, Taneyhill DE, Dunn AM, Tofts C (1999) Population dynamics under parasitic sex ratio distortion. Theor Popul Biol 56:11–28PubMedCrossRefGoogle Scholar
  58. Henneman ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316PubMedCrossRefGoogle Scholar
  59. Hesketh H, Roy HE, Eilenberg J, Pell JK, Hails RS (2010) Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl 55:55–73CrossRefGoogle Scholar
  60. Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153:464–475Google Scholar
  61. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281:215–220PubMedPubMedCentralCrossRefGoogle Scholar
  62. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256PubMedCrossRefGoogle Scholar
  63. Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hoos PM, Whitman Miller A, Ruiz GM, Vrijenhoek RC, Geller JB (2010) Genetic and historical evidence disagree on likely sources of the Atlantic amethyst gem clam Gemma gemma (Totten, 1834) in California. Divers Distrib 16:582–592CrossRefGoogle Scholar
  65. Huber JA, Mark Welch D, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100PubMedCrossRefGoogle Scholar
  66. Hughes CL, Hill JK, Dytham C (2003) Evolutionary trade-offs between reproduction and dispersal at expanding range boundaries. Biol Lett 270:S147–S150Google Scholar
  67. Hurst GDD, Majerus MEN (1993) Why do maternally inherited microorganisms kill males? Heredity 71:81–95CrossRefGoogle Scholar
  68. Ibrahim K, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291CrossRefGoogle Scholar
  69. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMedPubMedCentralCrossRefGoogle Scholar
  70. Heimpel GE, Asplen MK (2011) A ‘Goldilocks’ hypothesis for dispersal of biological control agents. BioControl. doi:10.1007/s10526-011-9381-7
  71. Heimpel GE, Frelich LE, Landis DA, Hopper KR, Hoelmer KA, Sezen Z, Asplen MK, Wu KM (2010) European buckthorn and Asian soybean aphid as components of an extensive invasional meltdown in North America. Biol Invasions 12:2913–2931CrossRefGoogle Scholar
  72. Hoogendoorn M, Heimpel GE (2002) Indirect interactions between an introduced and a native ladybird beetle species mediated by a shared parasitoid. Biol Control 25:224–230CrossRefGoogle Scholar
  73. Kang M, Buckley YM, Lowe AJ (2007) Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Mol Ecol 16:4662–4673PubMedCrossRefGoogle Scholar
  74. Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866PubMedCrossRefGoogle Scholar
  75. Kelly DW, Muirhead JR, Heath DD, Macisaac HJ (2006) Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol Ecol 15:3641–3653PubMedCrossRefGoogle Scholar
  76. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664PubMedPubMedCentralCrossRefGoogle Scholar
  77. King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963PubMedCrossRefGoogle Scholar
  78. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23:482–490PubMedCrossRefGoogle Scholar
  79. Knowles LL, Alvarado-Serrano DF (2010) Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers. Mol Ecol 19:3727–3745PubMedCrossRefGoogle Scholar
  80. Knowles LL, Maddison WP (2002) Statistical phylogeography. Mol Ecol 11:2623–2635PubMedCrossRefGoogle Scholar
  81. Kokko H, Lopez-Sepulcre A (2006) From individual dispersal to species ranges: perspectives for a changing world. Science 313:789–791PubMedCrossRefGoogle Scholar
  82. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  83. Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181PubMedCrossRefGoogle Scholar
  84. Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 4:434–437PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  87. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809PubMedCrossRefGoogle Scholar
  88. Lombaert E, Guillemaud T, Cornuet JM, Malausa T, Facon B, Estoup A (2010) Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. PLoS One 5:e9743PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant-pollinator network: an experimental approach. Ecol Lett 10:539–550PubMedCrossRefGoogle Scholar
  90. Lozier JD, Roderick GK, Mills NJ (2009) Tracing the invasion history of mealy plum aphid, Hyalopterus pruni (Hemiptera: Aphididae), in North America: a population genetics approach. Biol Invasions 11:299–314CrossRefGoogle Scholar
  91. Marrs RA, Sforza R, Hufbauer RA (2008) Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Mol Ecol 17:4197–4208PubMedCrossRefGoogle Scholar
  92. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323:141–144PubMedCrossRefGoogle Scholar
  93. Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc R Soc B Biol Sci 269:2395–2399CrossRefGoogle Scholar
  94. Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Gen 11:31–46CrossRefGoogle Scholar
  95. Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278PubMedCrossRefGoogle Scholar
  96. Miller N, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Kim KS, Reynaud P, Furlan L, Guillemaud T (2005) Multiple transatlantic introductions of the western corn rootworm. Science 310:992PubMedCrossRefGoogle Scholar
  97. Moody ME, Mack RN (1988) Controlling the spread of plant invasions—the importance of nascent foci. J App Ecol 25:1009–1021CrossRefGoogle Scholar
  98. Morton A, Routledge R, Peet C, Ladwig A (2004) Sea lice (Lepeophtheirus salmonis) infection rates on juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon in the nearshore marine environment of British Columbia, Canada. Can J Fish Aquat Sci 61:147–157CrossRefGoogle Scholar
  99. Nash DR, Agassiz DJL, Godfray HCJ, Lawton JH (1995) The small scale spatial distribution of an invading moth. Oecologia 103:196–202PubMedCrossRefGoogle Scholar
  100. Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Marden JH, Ovaskainen O, Hanski I (2009) Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Ecology 90:2223–2232PubMedCrossRefGoogle Scholar
  101. O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817CrossRefGoogle Scholar
  102. Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803PubMedCrossRefGoogle Scholar
  103. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agr Ecosyst Environ 84:1–20CrossRefGoogle Scholar
  104. Prenter J, MacNeil C, Dick JTA, Dunn AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19:385–390PubMedCrossRefGoogle Scholar
  105. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  106. Ray N (2005) PATHMATRIX: a geographical information system tool to compute effective distances among samples. Mol Ecol Notes 5:177–180CrossRefGoogle Scholar
  107. Reeves SA, Usher MB (1989) Application of a diffusion model to the spread of an invasive species: the coypu in Great Britain. Ecol Model 47:217–232CrossRefGoogle Scholar
  108. Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198PubMedCrossRefGoogle Scholar
  109. Riddick EW, Cottrell TE, Kidd KA (2009) Natural enemies of the Coccinellidae: parasites, pathogens and parasitoids. Biol Control 51:306–312CrossRefGoogle Scholar
  110. Roderick GK, Navajas M (2003) Genes in new environments: genetics and evolution in biological control. Nat Rev Gen 4:889–899CrossRefGoogle Scholar
  111. Roff DA, Fairbairn DJ (2007) The evolution and genetics of migration in insects. Bioscience 57:155–164CrossRefGoogle Scholar
  112. Rollins LA, Woolnough AP, Wilton AN, Sinclair R, Sherwin WB (2009) Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol Ecol 18:1560–1573PubMedCrossRefGoogle Scholar
  113. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464PubMedCrossRefGoogle Scholar
  114. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253CrossRefGoogle Scholar
  115. Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17:4657–4669PubMedCrossRefGoogle Scholar
  116. Roy HE, Hails RS, Hesketh H, Roy DB, Pell JK (2009) Beyond biological control: non-pest insects and their pathogens in a changing world. Insect Conserv Divers 2:65–72CrossRefGoogle Scholar
  117. Roy HE, De Clercq P, Lawson Handley LJ, Poland RL, Sloggett JJ, Wajnberg E (2011a) Alien arthropod predators and parasitoids: an ecological approach. BioControl. doi:10.1007/s10526-011-9388-0
  118. Roy HE, Lawson Handley LJ, Schönrogge K, Poland RL, Purse BV (2011b) Can natural enemy release explain the success of invasive predators and parasitoids? BioControl. doi:10.1007/s10526-011-9349-7
  119. Saastamoinen M, Hanski I (2008) Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly. Am Nat 171:701–712PubMedCrossRefGoogle Scholar
  120. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Ann Rev Ecol Evol Syst 32:305–332CrossRefGoogle Scholar
  121. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471PubMedCrossRefGoogle Scholar
  122. Schierenbeck KA, Ainouche ML (2006) The role of evolutionary genetics in studies of plant invasions. In: Cadotte M, Mc Mahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Springer, Dordrecht, pp 193–221Google Scholar
  123. Sharov AA, Liebhold AM (1998) Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol Appl 8:1170–1179CrossRefGoogle Scholar
  124. Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator-prey food-webs. Funct Ecol 19:751–762CrossRefGoogle Scholar
  125. Sheppard SK, Henneman ML, Memmott J, Symondson WOC (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Mol Ecol 13:2077–2088PubMedCrossRefGoogle Scholar
  126. Shigesada N, Kawasaki K, Takeda Y (1995) Modelling stratified diffusion in biological invasions. Am Nat 146:229–251CrossRefGoogle Scholar
  127. Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919PubMedCrossRefGoogle Scholar
  128. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  129. Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164:378–395PubMedGoogle Scholar
  130. Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218PubMedCrossRefGoogle Scholar
  131. Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  132. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored biosphere. Proc Natl Acad Sci USA 103:12115–12120PubMedPubMedCentralCrossRefGoogle Scholar
  133. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang HF, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Nee) in the face of climate change. Mol Ecol 19:3806–3823PubMedCrossRefGoogle Scholar
  134. Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712PubMedCrossRefGoogle Scholar
  135. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514PubMedCrossRefGoogle Scholar
  136. Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci USA 98:1095–1100PubMedPubMedCentralCrossRefGoogle Scholar
  137. Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641PubMedCrossRefGoogle Scholar
  138. Thibault I, Bernatchez L, Dobson J (2009) The contribution of newly established populations to the dynamics of range expansion in a one-dimensional fluvial-estuarine system: rainbow trout (Oncorhynchus mykiss) in Eastern Quebec. Divers Distrib 15:1060–1072CrossRefGoogle Scholar
  139. Travis JMJ, Dytham C (2002) Dispersal evolution during invasions. Evol Ecol Res 4:1119–1129Google Scholar
  140. Travis JMJ, Mustin K, Benton TG, Dytham C (2009) Accelerating invasion rates result from the evolution of density-dependent dispersal. J Theor Biol 259:151–158PubMedCrossRefGoogle Scholar
  141. Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205PubMedCrossRefGoogle Scholar
  142. Urban M, Phillips B, Skelly D, Shine R (2008) A toad more travelled: the heterogeneous invasion dynamics of cane toads in Australia. Am Nat 171:134–148CrossRefGoogle Scholar
  143. Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples—a case study on prey DNA in Antarctic krill stomachs. Front Zool 5:12PubMedPubMedCentralCrossRefGoogle Scholar
  144. Voisin M, Engel C, Viard F (2005) Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci USA 102:5432–5437PubMedPubMedCentralCrossRefGoogle Scholar
  145. Ware RL, Majerus MEN (2008) Intraguild predation of immature stages of British and Japanese coccinellids by the invasive ladybird Harmonia axyridis. BioControl 53:169–188CrossRefGoogle Scholar
  146. Ware RL, Evans N, Malpas L, Michie L-J, O’Farrell K, Majerus MEN (2008) Intraguild predation of British and Japanese coccinellid eggs by the invasive ladybird Harmonia axyridis. Neobiota 7:263–275Google Scholar
  147. Watt WB, Wheat CW, Meyer EH, Martin JF (2003) Adaptation at specific loci. VII. Natural selection, dispersal and the diversity of molecular-functional variation patterns among butterfly species complexes (Colias Lepidoptera, Pieridae). Mol Ecol 12:1265–1275PubMedCrossRefGoogle Scholar
  148. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751PubMedCrossRefGoogle Scholar
  149. Wheat CW, Watt WB, Pollock DD, Schulte PM (2006) From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Mol Biol Evol 23:499–512PubMedCrossRefGoogle Scholar
  150. Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580CrossRefGoogle Scholar
  151. Williamson M (2006) Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions 8:1561–1568CrossRefGoogle Scholar
  152. Wolfe LM, Blair AC, Penna BM (2007) Does intraspecific hybridization contribute to the evolution of invasiveness? an experimental test. Biol Invasions 9:515–521CrossRefGoogle Scholar
  153. Work T, McCullough D, Cavey J, Komsa R (2005) Arrival rate of nonindigenous insect species into the United States through foreign trade. Biol Invasions 7:323–332CrossRefGoogle Scholar
  154. Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045PubMedPubMedCentralCrossRefGoogle Scholar
  155. Zalewski A, Piertney SB, Zalewska H, Lambin X (2009) Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland. Mol Ecol 18:1601–1615PubMedCrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2011

Authors and Affiliations

  • L.-J. Lawson Handley
    • 1
  • A. Estoup
    • 2
  • D. M. Evans
    • 1
  • C. E. Thomas
    • 1
  • E. Lombaert
    • 3
  • B. Facon
    • 2
  • A. Aebi
    • 4
  • H. E. Roy
    • 5
  1. 1.Department of Biological SciencesUniversity of HullHullUK
  2. 2.INRA UMR Centre de Biologie et de Gestion des Populations (INRA/IRD/Cirad/Montpellier SupAgro)Montferrier-sur-LezFrance
  3. 3.Equipe “Biologie des Populations en Interaction”INRA UMR 1301 IBSV (INRA/CNRS-Université de Nice-Sophia Antipolis)Sophia-AntipolisFrance
  4. 4.Agroscope Reckenholz-TänikonResearch Station ARTZurichSwitzerland
  5. 5.NERC Centre for Ecology & HydrologyCrowmarsh GiffordOxfordshireUK

Personalised recommendations