, Volume 55, Issue 5, pp 685–694 | Cite as

Biology of the leaf roller Salbia lotanalis and its impact on the invasive tree Miconia calvescens

  • Elisangela G. F. Morais
  • Marcelo C. Picanço
  • Robert W. Barreto
  • Gerson A. Silva
  • Shaiene C. Moreno
  • Renan B. Queiroz


Miconia calvescens (Melastomataceae) is an invasive alien tree in native forests on some Pacific islands and a potentially invasive species in Australia. Searches for potential classical biocontrol agents have been undertaken for over a decade in the centre of origin (Central and South America). Salbia lotanalis (Lepidoptera: Pyralidae) is a leaf roller which has been recognized as a promising classical biocontrol agent for M. calvescens. This paper presents the biology and an impact study of S. lotanalis on M. calvescens. Life table parameters showed that S. lotanalis has a high reproductive capacity, with up to six generations a year. Miconia calvescens seedlings attacked by S. lotanalis caterpillars had their growth rate significantly reduced. Seedlings subjected initially to a high level of defoliation (80%) caused by caterpillars had leaf fall and a lower leaf area than controls after 210 days. Considering the high population growth rate and significant impact on young plants, S. lotanalis appears to have a high potential for use as a classical biological control agent to be used against M. calvescens.


Classical biocontrol Melastomataceae Lepidoptera: Pyralidae Fertility life table Defoliation Pacific islands 



This study was supported by USGS BRD Pacific Island Ecosystem Research Centre, National Park Service, the Research Corporation of Hawaii and the National Council for Scientific and Technological Development (CNPq). We thank Dr. C. Smith (RCUH, University of Hawaii, USA) for reviewing this manuscript and continuous support and encouragement. We also thank Dr. Vitor Becker for identification of insect species. This research is part of a project “Foreign Exploration for Biocontrol Agents against Miconia”, in a partnership between The Research Corporation of the University of Hawaii, USGS BRD Pacific Island Ecosystem Research Centre, National Park Service and Fundação Arthur Bernardes (FUNARBE), Universidade Federal de Viçosa, Brazil.


  1. Baars JR (2003) Geographic range, impact, and parasitism of lepidopteran species associated with the invasive weed Lantana camara in South Africa. Biol Control 28:293–301CrossRefGoogle Scholar
  2. Badenes-Perez FR, Johnson MT (2007a) Ecology and impact of Allorhogas sp (Hymenoptera: Braconidae) and Apion sp (Coleoptera: Curculionoidea) on fruits of Miconia calvescens DC (Melastomataceae) in Brazil. Biol Control 43:317–322CrossRefGoogle Scholar
  3. Badenes-Perez FR, Johnson MT (2007b) Ecology, host specificity and impact of Atomacera petroa Smith (Hymenoptera: Argidae) on Miconia calvescens DC (Melastomataceae). Biol Control 43:95–101CrossRefGoogle Scholar
  4. Badenes-Perez FR, Johnson MT (2008) Biology, herbivory, and host specificity of Antiblemma leucocyma (Lepidoptera: Noctuidae) on Miconia calvescens DC. (Melastomataceae) in Brazil. Biocontrol Sci Techn 18:183–192CrossRefGoogle Scholar
  5. Blossey B, Notzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol 83:887–889CrossRefGoogle Scholar
  6. Burckhardt D, Hanson P, Madrigal L (2005) Diclidophlebia lucens, n. sp (Hemiptera: Psyllidae) from Costa Rica, a potential control agent of Miconia calvescens (Melastomataceae) in Hawaii. Proc Entomol Soc Wash 107:741–749Google Scholar
  7. Burckhardt D, Morais EGF, Picanço MC (2006) Diclidophlebia smithi sp. n., a new species of jumping plant-lice (Hemiptera, Psylloidea) from Brazil associated with Miconia calvescens (Melastomataceae). Mitt Schweiz Entomol Ges 79:241–250Google Scholar
  8. Butt BA, Cantu E (1962) Sex determination of lepidopterous pupae. United States Department of Agriculture, Agricultural Research Service Report, pp 33–75Google Scholar
  9. Csurhes SM (1997) Miconia calvescens, a potentially invasive plant in Australia’s tropical and sub-tropical rainforests. In: Meyer JY, Smith CW (eds) Proceedings of the first regional conference on miconia control, Papeete Tahiti. Gouvernement de Polynésie française, University of Hawaii at Manoa, Centre ORSTOM, pp 72–77Google Scholar
  10. Daly HV (1985) Insect morphometrics. Annu Rev Entomol 30:415–438CrossRefGoogle Scholar
  11. Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30CrossRefGoogle Scholar
  12. Dhileepan K, Snow EL, Rafter MA, Trevino M, McCarthy J, Senaratne K (2007) The leaf-tying moth Hypocosmia pyrochroma (Lep., Pyralidae), a host-specific biological control agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae) in Australia. J Appl Entomol 131:564–568CrossRefGoogle Scholar
  13. Goolsby JA, Zonneveld R, Bourne A (2004) Prerelease assessment of impact on biomass production of an invasive weed, Lygodium microphyllum (Lygodiaceae: Pteridophyta), by a potential biological control agent, Florocarus perrepae (Acariformes: Eriophyidae). Environ Entomol 33:997–1002CrossRefGoogle Scholar
  14. Harley KLS, Forno IW (1992) Biological control of weeds: a handbook for practitioners and students. Inkata Press, BrisbaneGoogle Scholar
  15. Julien MH (1997) Success, and failure, in biological control of weeds. In: Julien MH, White G (eds) Biological control of weeds: theory and practical application. Australian Centre for International Ag. Research, Canberra, pp 9–15Google Scholar
  16. Kaiser BA (2006) Economic impacts of non-indigenous species: Miconia and the Hawaiian economy. Euphytica 148:135–150CrossRefGoogle Scholar
  17. Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638CrossRefPubMedGoogle Scholar
  18. Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989CrossRefGoogle Scholar
  19. Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects––the Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396CrossRefPubMedGoogle Scholar
  20. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG) a Specialist Group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), p 12Google Scholar
  21. Medeiros AC, Loope LL, Conant P, McElvaney S (1997) Status, ecology, and management of the invasive plant, Miconia calvescens DC (Melastomataceae) in the Hawaiian Islands. Bishop Mus Occas Pap 48:23–36Google Scholar
  22. Meyer JY (1996) Status of Miconia calvescens (Melastomataceae), a dominant invasive tree in the Society Islands (French Polynesia). Pac Sci 50:66–76Google Scholar
  23. Meyer JY (1998) Observations on the reproductive biology of Miconia calvescens DC (Melastomataceae), an alien invasive tree on the island of Tahiti (South Pacific Ocean). Biotropica 30:609–624CrossRefGoogle Scholar
  24. Meyer JY, Florence J (1996) Tahiti’s native flora endangered by the invasion of Miconia calvescens DC. (Melastomataceae). J Biogeogr 23:775–781CrossRefGoogle Scholar
  25. Meyer JY, Duplouy A, Taputuarai R (2007) Dynamique des populations de l’arbre endémique Myrsine longifolia (Myrsinacées) dans les forêts de Tahiti (Polynésie française) envahies par Miconia calvescens (Melastomatacées) après introduction d’un champignon pathogène de lutte biologique: premières investigations. Revue d’Ecologie (Terre Vie) 62:17–33Google Scholar
  26. Meyer JY, Taputuarai R, Killgore E (2008) Dissemination and impacts of the fungal pathogen Colletotrichum gloeosporioides f.sp. miconiae (Deuteromycetinae) on the invasive alien tree Miconia calvescens (Melastomataceae) in the rainforests of Tahiti (French Polynesia, South Pacific). In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium on biological control of weeds, CAB International, Wallingford, pp 594–600Google Scholar
  27. Murphy HT, Hardesty BD, Fletcher CS, Metcalfe DJ, Westcott DA, Brooks SJ (2008) Predicting dispersal and recruitment of Miconia calvescens (Melastomataceae) in Australian tropical rainforests. Biol Invas 10:925–936CrossRefGoogle Scholar
  28. Ostermeyer N, Grace BS (2007) Establishment, distribution and abundance of Mimosa pigra biological control agents in northern Australia: implications for biological control. BioControl 52:703–720CrossRefGoogle Scholar
  29. Picanço MC, Barreto RW, Fidelis EG, Semeão AA, Rosado JF, Moreno SC, Barros EC, Silva GA, Johnson T (2005) Biological Control of Miconia calvescens by phytophagous arthropods. Pacific Cooperative Studies Unit, at Manoa, Manoa. University of Hawai’i, Manoa, p 30Google Scholar
  30. Price PW (1997) Insect ecology. John Wiley & Sons, New York, p 639Google Scholar
  31. Raghu S, Dhileepan K (2005) The value of simulating herbivory in selecting effective weed biological control agents. Biol Control 34:265–273CrossRefGoogle Scholar
  32. Seixas CDS, Barreto RW, Matsuoka K (2002) First report of a phytoplasma-associated witches broom disease of Miconia calvescens in Brazil. Plant Pathol 51:801CrossRefGoogle Scholar
  33. Seixas CDS, Barreto RW, Freitas LG, Maffia LA, Monteiro FT (2004) Ditylenchus drepanocercus (Nematoda), a potential biological control agent for Miconia calvescens (Melastomataceae): host-specificity and epidemiology. Biol Control 31:29–37CrossRefGoogle Scholar
  34. Seixas CDS, Barreto RW, Killgore E (2007) Fungal pathogens of Miconia calvescens (Melastomataceae) from Brazil, with reference to classical biological control. Mycologia 99:99–111CrossRefPubMedGoogle Scholar
  35. Smith CW (2002) Forest pest biological control program in Hawaii. In: Smith CW, Denslow J and Hight S (eds) Proceedings of workshop on biological control of native ecosystems in Hawai’i. Pacific Cooperative Studies Unit, University of Hawaii at Manoa, Department of Botany, Honolulu, p 122Google Scholar
  36. Southwood TRE, Henderson PA (2000) Ecological methods, with particular reference to the study of insect populations. Blackwell Science, Oxford, p 575Google Scholar
  37. Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185CrossRefPubMedGoogle Scholar
  38. Townsend CR, Begon M, Harper JL (2008) Essentials of ecology. Blackwell Publishing, London, p 532Google Scholar
  39. Williams HE, Madire LG (2008) Biology, host range and varietal preference of the leaf-feeding geometrid, Leptostales ignifera, a potential biocontrol agent for Lantana camara in South Africa, under laboratory conditions. BioControl 53:957–969CrossRefGoogle Scholar
  40. Zhu L, Sang WG (2008) Effects of defoliation on competitive interactions between invasive crofton weed (Eupatorium adenophorum) and its native neighbors: implication for biocontrol. Weed Sci 56:112–118CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2010

Authors and Affiliations

  • Elisangela G. F. Morais
    • 1
  • Marcelo C. Picanço
    • 1
  • Robert W. Barreto
    • 2
  • Gerson A. Silva
    • 1
  • Shaiene C. Moreno
    • 3
  • Renan B. Queiroz
    • 1
  1. 1.Department of Animal BiologyFederal University of ViçosaViçosaBrazil
  2. 2.Department of FitopathologyFederal University of ViçosaViçosaBrazil
  3. 3.Department of EntomologyFederal University of LavrasLavrasBrazil

Personalised recommendations