BioControl

, Volume 55, Issue 4, pp 493–501 | Cite as

Thermal activity thresholds of the predatory mirid Nesidiocoris tenuis: implications for its efficacy as a biological control agent

  • Gwennan E. Hughes
  • Lucy Alford
  • Guido Sterk
  • Jeffrey S. Bale
Article

Abstract

This study investigates the thermal activity thresholds of the predatory mirid Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Adult N. tenuis lost locomotory function and entered chill coma at significantly lower temperatures (4.0°C and 0.3°C, respectively) than adult T. urticae (7.0°C and 5.7°C, respectively). However, the mirids were more adversely affected by high temperatures, with T. urticae losing the ability to walk and entering heat coma at higher temperatures (47.3°C and 49.7°C, respectively) than N. tenuis (43.5°C and 46.6°C, respectively). Across a range of temperatures (2.5–20°C) adult N. tenuis had faster walking speeds than T. urticae. These data are discussed in relation to the climatic conditions under which N. tenuis would be an effective biocontrol agent.

Keywords

Biocontrol Chill coma CTmax CTmin Heat coma Nesidiocoris tenuis 

References

  1. Brown PMJ, Roy HE, Rothery P, Roy DB, Ware RL, Majerus MEN (2008) Harmonia axyridis in Great Britain: analysis of the spread and distribution of a non-native coccinellid. BioControl 53:55–67CrossRefGoogle Scholar
  2. Castaneda LE, Lardies MA, Bozinovic F (2004) Adaptive latitudinal shifts in the thermal physiology of a terrestrial isopod. Evol Ecol Res 6:579–593Google Scholar
  3. Castaneda LE, Lardies MA, Bozinovic F (2005) Interpopulational variation in recovery time from chill coma along a geographic gradient: a study in the common woodlouse, Porcellio laevis. J Insect Physiol 51:1346–1351CrossRefPubMedGoogle Scholar
  4. Cedola CV, Sanchez NE, Liljesthrom GG (2001) Effect of tomato leaf hairiness on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp Appl Acarol 25:819–831CrossRefPubMedGoogle Scholar
  5. Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:263–296Google Scholar
  6. De Clercq P, Mohaghegh J, Tirry L (2000) Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biol Control 18:65–70CrossRefGoogle Scholar
  7. Fry FEJ (1967) Responses of vertebrate poikilotherms to temperature. In: Rose AH (ed) Thermobiology. Academic Press, London, pp 375–409Google Scholar
  8. Gilbert P, Moreteau B, Pétavy G, Karan D, David JR (2001) Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution 55:1063–1068CrossRefGoogle Scholar
  9. Hatherly IS, Hart AJ, Tullett AG, Bale JS (2005) Use of thermal data as a screen for the establishment potential of non-native biological control agents in the UK. BioControl 50:687–698CrossRefGoogle Scholar
  10. Hatherly IS, Pedersen BP, Bale JS (2008) Establishment potential of the predatory mirid Dicyphus hesperus in northern Europe. BioControl 53:589–601CrossRefGoogle Scholar
  11. Hazell SP, Pedersen BP, Worland MR, Blackburn TM, Bale JS (2008) A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol Entomol 33:389–394CrossRefGoogle Scholar
  12. Hazell SP, Groutides C, Pedersen BP, Blackburn TM, Bale JS (2010) A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic. J Insect Physiol 56:115–122CrossRefPubMedGoogle Scholar
  13. Hughes GE, Bale JS, Sterk G (2009) Thermal biology and establishment potential in temperate climates of the predatory mirid Nesidiocoris tenuis. BioControl 54:785–795CrossRefGoogle Scholar
  14. Jolly RJ (2000) The predatory mite Neoseiulus californicus: its potential ac a biological control agent for the fruit tree red spider mite Panonychus ulmi in the UK, Pests & Diseases 2000, vol 1, Proceedings of the 2000 Brighton conference, pp 487–490Google Scholar
  15. Klok CJ, Chown SL (2003) Resistance to temperature extremes in sub-Antarctic weevils: interspecific variation, population differentiation and acclimation. Biol J Linn Soc 78:401–414CrossRefGoogle Scholar
  16. Koveos DS, Broufas GD (2000) Functional response of Euseius finlandicus and Amblyseius andersoni to Panonychus ulmi on apple and peach leaves in the laboratory. Exp Appl Acarol 24:247–256CrossRefPubMedGoogle Scholar
  17. Lombaert E, Malausa T, Devred R, Estoup A (2008) Phenotypic variation in invasive and biocontrol populations of the harlequin ladybird, Harmonia axyridis. BioControl 53:89–102CrossRefGoogle Scholar
  18. Lutterschmidt WJ, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75:1561–1574CrossRefGoogle Scholar
  19. Majerus MEN, Strawson V, Roy H (2006) The potential impacts of the arrival of the harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in Britain. Ecol Entomol 31:207–215CrossRefGoogle Scholar
  20. Mellanby K (1939) Low temperature and insect activity. Proc R Soc Lond B Biol Sci 127:473–487CrossRefGoogle Scholar
  21. Minitab Inc. (2007) Assessing quality. In: Meet Minitab 15, p 129Google Scholar
  22. Pitts KM, Wall R (2006) Cold shock and cold tolerance in larvae and pupae of the blow fly, Lucilia sericata. Physiol Entomol 31:57–62CrossRefGoogle Scholar
  23. Poutsma J, Loomans AJM, Aukema B, Heijerman T (2008) Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 53:103–125CrossRefGoogle Scholar
  24. Renault D, Salin C, Vannier G, Vernon P (1999) Survival and chill-coma in the adult lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae), exposed to low temperatures. J Therm Biol 24:229–236CrossRefGoogle Scholar
  25. Sinclair BJ, Terblanche JS, Scott MB, Blatch GL, Klok CJ, Chown S (2006) Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. J Insect Physiol 52:29–50CrossRefPubMedGoogle Scholar
  26. Skirvin DJ, Fenlon JS (2001) Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control. Bull Entomol Res 91:61–67PubMedGoogle Scholar
  27. Terblanche JS, Sinclair BJ, Klok CJ, McFarlane ML, Chown SL (2005) The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). J Insect Physiol 51:1013–1023CrossRefPubMedGoogle Scholar
  28. Tullett AG (2002) Methodologies for assessing the effects of low temperature on the establishment potential of non-native arthropods. PhD thesis, University of Birmingham, pp 66–79Google Scholar
  29. Tullett AG, Hart AJ, Worland MR, Bale JS (2004) Assessing the effects of low temperature on the establishment potential in Britain of the non-native biological control agent Eretmocerus eremicus. Physiol Entomol 29:363–371CrossRefGoogle Scholar
  30. Turnock WJ, Fields PG (2005) Winter climates and cold hardiness in terrestrial insects. Eur J Entomol 102:561–576Google Scholar
  31. Van Lenteren JC, Loomans AJM (2006) Biological control of arthropods: methods and risk assessment. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental risk assessment: methods for comprehensive evaluation and quick scan. CAB Int., Wallingford, pp 254–272Google Scholar
  32. Van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM (2006) Assessing risks of releasing biological control agents of arthropod pests. Annu Rev Entomol 51:609–634CrossRefPubMedGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2010

Authors and Affiliations

  • Gwennan E. Hughes
    • 1
  • Lucy Alford
    • 1
  • Guido Sterk
    • 2
  • Jeffrey S. Bale
    • 1
  1. 1.School of BiosciencesUniversity of BirminghamEdgbaston, BirminghamUK
  2. 2.Biobest N.V.WesterloBelgium

Personalised recommendations