, Volume 55, Issue 3, pp 423–434 | Cite as

Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora

  • John Mukuka
  • Olaf Strauch
  • Lieven Waeyenberge
  • Nicole Viaene
  • Maurice Moens
  • Ralf-Udo Ehlers


Quality of biological control products based on entomopathogenic nematodes can be severely damaged due to exposure to high temperature surpassing 40°C. The study screened 36 natural populations and 18 hybrid or inbred strains of Heterorhabditis bacteriophora for their response to high temperature. Nematodes were tested with or without prior adaptation to heat at 35°C for 3 h. Five strains of H. indica and one of H. megidis were also included. Molecular identification using nuclear ribosomal DNA sequences confirmed the designation to the three Heterorhabditis spp. The mean tolerated temperature ranged from 33.3°C to 40.1°C for non-adapted and from 34.8°C to 39.2°C for adapted strain populations. H. indica was the most tolerant, followed by H. bacteriophora and H. megidis. No correlation was recorded between tolerance assessed with and without adaptation to heat, implying that different genes are involved. Correlation between heat tolerance and mean annual temperature at place of origin of the strains was weak. A high variability in tolerance among strains and the relatively high heritability (h² = 0.68) for the adapted heat tolerance recorded for H. bacteriophora provide an excellent foundation for future selective breeding with the objective to enhance heat tolerance of H. bacteriophora.


Biological control Adaptation H. indica H. megidis Selective breeding Enhanced heat tolerance 



Thanks are due to all colleagues, who kindly provided nematode strains and to Berhanu Hunegnaw Kassahun for technical support with the molecular identification. The scholarship to the first author by the German Academic Exchange Service ( is highly appreciated.


  1. Berner M, Ehlers R-U, Schnetter W (2001) Genetic variability and discrimination of isolates, inbred lines and hybrids of Heterorhabditis bacteriophora via RAPD-PCR. In: 34th annual meeting of the society of invertebrate pathology. Noordwijkerhout, p 7Google Scholar
  2. Ciche T (2007) The biology and genome of Heterorhabditis bacteriophora. In: WormBook (ed) The C. elegans research community.
  3. Ciche TA, Darby C, Ehlers R-U, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Control 38:22–46CrossRefGoogle Scholar
  4. Curran J, Gilbert C, Butler K (1992) Routine cryopreservation of Steinernema and Heterorhabditis spp. J Nematol 24:1–3Google Scholar
  5. Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, UK, pp 79–98CrossRefGoogle Scholar
  6. Dutky SR, Thompson JV, Cantwell GE (1962) A technique for mass rearing the greater wax moth (Lepidopera: Galleriidae). Proc Ent Soc Wash 64:56–58Google Scholar
  7. Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633CrossRefPubMedGoogle Scholar
  8. Ehlers R-U (2003) Biocontrol nematodes. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides. Kluwer Academic Publishers, The Netherlands, pp 177–220Google Scholar
  9. Ehlers R-U, Oestergaard J, Hollmer S, Wingen M, Strauch O (2005) Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode-bacterium complex Heterorhabditis bacteriophora-Photorhabdus luminescens. BioControl 50:699–716CrossRefGoogle Scholar
  10. Glazer I (2002) Survival biology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, UK, pp 169–187CrossRefGoogle Scholar
  11. Glazer I, Gaugler R, Segal D (1991) Genetics of the entomopathogenic nematode Heterorhabditis bacteriophora (strain HP88): the diversity of beneficial traits. J Nematol 23:324–333PubMedGoogle Scholar
  12. Grewal PS, Gaugler R, Kaya HK, Wusaty M (1993) Infectivity of the entomopathogenic nematode Steinernema scapterisci (Nematoda: Steinernamatidae). J Invertebr Pathol 62:22–28CrossRefGoogle Scholar
  13. Grewal PS, Selvan S, Gaugler R (1994) Thermal adaptation of entomopathogenic nematodes: Niche breadth for infection, establishment and reproduction. J Thermal Biol 19:245–253CrossRefGoogle Scholar
  14. Grewal PS, Wang X, Taylor RAJ (2002) Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? Int J Parasitol 32:717–725CrossRefPubMedGoogle Scholar
  15. Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI International, UKCrossRefGoogle Scholar
  16. Grewal PS, Bornstein-Forst S, Burnell AM, Glazer I, Jagdale GB (2006) Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biol Contr 38:54–65CrossRefGoogle Scholar
  17. Griffin CR, Downes MJ (1991) Low temperature activity in Heterorhabditis sp. (Nematoda: Heterorhabditidae). Nematologica 37:83–91CrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  19. Han R, Ehlers R-U (2000) Pathogenicity, development and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J Invertebr Pathol 75:55–58CrossRefPubMedGoogle Scholar
  20. Hashmi GS, Hashmi S, Selvan S, Grewal PS, Gaugler R (1997) Polymorphism in heat shock protein gene (hsp70) in entomopathogenic nematodes (Rhabditida). J Therm Biol 22:143–149CrossRefGoogle Scholar
  21. Jagdale GB, Grewal PS, Salminen SO (2005) Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode. J Parasitol 91:988–994CrossRefPubMedGoogle Scholar
  22. Johnigk SA, Hollmer S, Strauch O, Wyss U, Ehlers R-U (2002) Heritability of the liquid culture mass production potential of the entomopathogenic nematode Heterorhabditis bacteriophora. Biocontrol Sci Technol 12:267–276CrossRefGoogle Scholar
  23. Joyce SA, Burnell AM, Powers TO (1994) Characterization of Heterorhabditis isolates by PCR amplification of segments of mtDNA and rDNA genes. J Nematol 26:260–270PubMedGoogle Scholar
  24. Koppenhöfer AM (2000) Nematodes. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Academic Press, The Netherlands, pp 283–301Google Scholar
  25. Kung SP, Gaugler R, Kaya HK (1991) Effects of soil temperature, moisture and relative humidity on entomopathogenic nematode persistence. J Invertebr Pathol 57:242–249CrossRefGoogle Scholar
  26. Molyneux AS (1986) Heterorhabditis spp. and Steinernema (=Neoaplectana) spp.: temperature and aspects of behaviour and infectivity. Exp Parasit 62:169–180CrossRefPubMedGoogle Scholar
  27. Nguyen KB (2007) Methodology, morphology and identification. In: Nguyen KB, Hunt DJ (eds) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Hunt DJ, Perry RN (Series eds) Nematology monographs and perspectives, Brill NV, The Netherlands, pp 59–119Google Scholar
  28. Nguyen KB, Hunt DJ (2007) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Hunt DJ, Perry RN (Series eds) Nematology monographs and perspectives, Brill NV, The NetherlandsGoogle Scholar
  29. Selvan S, Grewal PS, Leustek T, Gaugler R (1996) Heat shock enhances thermotolerance of infective juvenile insect-parasitic nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). Experientia 52:727–730CrossRefPubMedGoogle Scholar
  30. Somasekhar N, Grewal PS, Klein MG (2002) Genetic variability in stress tolerance and fitness among natural populations of Steinernema carpocapsae. Biol Control 23:303–310CrossRefGoogle Scholar
  31. Strauch O, Niemann I, Neumann A, Schmidt AJ, Peters A, Ehlers R-U (2000) Storage and formulation of the entomopathogenic nematodes Heterorhabditis indica and H. bacteriophora. BioControl 45:483–500CrossRefGoogle Scholar
  32. Strauch O, Oestergaard J, Hollmer S, Ehlers R-U (2004) Genetic improvement of the desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora through selective breeding. Biol Control 31:218–226CrossRefGoogle Scholar
  33. Susurluk A, Ehlers R-U (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. BioControl 53:627–641CrossRefGoogle Scholar
  34. Swofford DL (1998) PAUP, phylogenetic analysis using parsimony and other methods. Version 4. Sinauer Associates, Sunderland, MA, p 128Google Scholar
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows inference: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 24:4876–4882CrossRefGoogle Scholar
  36. White F (1927) A method for obtaining infective juveniles from cultures. Science 66:1666–1670CrossRefGoogle Scholar
  37. Wright PJ (1992) Cool temperature reproduction of steinernematid and heterorhabditid nematodes. J Invertebr Pathol 60:148–151CrossRefGoogle Scholar
  38. Wright DJ, Peters A, Schroer S, Fife JP (2005) Application technology. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI Publishing, UK, pp 91–106CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2009

Authors and Affiliations

  • John Mukuka
    • 1
  • Olaf Strauch
    • 1
  • Lieven Waeyenberge
    • 2
  • Nicole Viaene
    • 2
  • Maurice Moens
    • 2
  • Ralf-Udo Ehlers
    • 1
  1. 1.Department for Biotechnology and Biological Control, Institute for PhytopathologyChristian-Albrechts-University KielKielGermany
  2. 2.Institute for Agricultural and Fisheries ResearchMerelbekeBelgium

Personalised recommendations