Advertisement

BioControl

, 53:813 | Cite as

Combined field efficacy of Paranosema locustae and Metarhizium anisopliae var. acridum for the control of sahelian grasshoppers

  • Agbeko Kodjo Tounou
  • Christiann Kooyman
  • Ouro Kobi Douro-Kpindou
  • Hans Michael Poehling
Article

Abstract

Field trials were conducted to evaluate the efficacy of wheat bran bait formulations of Paranosema locustae and Metarhizium anisopliae for controlling grasshoppers in southeast Niger. Treatments consisted of wheat bran baits mixed with M. anisopliae, P. locustae + M. anisopliae or with P. locustae spores and P. locustae + sugar. Oedaleus senegalensis, Pyrgomorpha cognata and Acrotylus blondeli were the predominant species at the time of application representing ca. 94% of the total population. Bran application was done when O. senegalensis (ca. 75% of the population) was at its early developmental stages, with first, second and third instars accounting for 64–85%. Grasshopper population reduction, P. locustae prevalence and level of infections in the predominant species were monitored. Manual application of P. locustae and M. anisopliae formulated in wheat bran has proven to induce consistent pathogen infection in grasshopper populations. Population density over the three weeks monitoring, typically decreased by 44.7 ± 6.9%, 52.8 ± 8.4%, 73.7 ± 5.5% and 89.1 ± 1.8% in P. locustae, P. locustae + sugar, M. anisopliae and P. locustae + M. anisopliae treated plots respectively. Paranosema locustae prevalence in surviving adult grasshoppers at 28 after application was 48.1 ± 2.3%, 28.9 ± 4.8% and 27.4 ± 3.7%, with infection level of 6.2 ± 0.8 × 106, 2.3 ± 0.3 × 104 and 2.1 ± 0.3 × 103 spores mg−1 host weight in O. senegalensis, A blondeli and P. cognate respectively. Other species that each accounted for <2% of the community, namely Aiolopus thalassinus, A. simulatrix, Acorypha glaucopsis, Acrotylus patruelis, Anacridium melanorhodon, Diabolocatantops axillaris, Kraussaria angulifera and Schistocerca gregaria were found to show sign of infection. The results from this study suggest that wheat bran application of M. anisopliae and P. locustae alone or in combination, targeting early instars grasshopper could be a valuable option in grasshopper control programs.

Keywords

Biological control Density reduction Disease prevalence Grasshoppers Metarhizium anisopliae Paranosema locustae 

Notes

Acknowledgments

This study was partly funded by the International Institute of Tropical Agriculture (IITA) and the German Academic Exchange Service (DAAD) in collaboration with the Leibniz University of Hanover (Germany). Authors are thankful to Prof. C. Borgemeister at ICIPE, Nairobi (Kenya) and Dr. J. Langewald at BASF Agrarzentrum, Limburgerhof (Germany) for their collaboration in this research work. We are grateful to Dr. D. Gnanvossou and K. Agboka at IITA Benin station and Dr. Mokpokpo Komi Fiaboe at IITA Uganda station for their critical review of the manuscript.

References

  1. Amatobi SA, Apiji SA, Oyidi O (1986) Weeding as a means of reducing the population of grasshopper pests and damage on pearl millet (Pennisetum mericanum (L) K Schumm) in Northern Niger. Insect Sci Appl 7:99–102Google Scholar
  2. Arthurs S, Thomas MB, Langewald J (2003) Field observation of effects of fenitrothion and Metarhizium anisopliae var. acridum on non-target ground dwelling arthropods in the Sahel. Biol Control 26:333–340CrossRefGoogle Scholar
  3. Bateman RP (1997) The development of a mycopesticide for the control of locusts and grasshoppers. Outlook Agric 26:13–18Google Scholar
  4. Bateman RP, Carey M, Douro-Kpindou O-K, Godonou I, Goettel M, Jenkins N, Kooyman C, Lomer CJ, Moore D, A Paraïso, Prior C, Shah P (2004) Lubilosa insect pathology manual. In: Lomer CH, Lomer CJ (eds) p 244Google Scholar
  5. Bauer LS, Miller DL, Maddox JV, McManus ML (1998) Interaction between a Nosema sp. (Microspora Nosematidae) and Nuclear Polyhedrosis Virus infecting the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). J Invertebr Pathol 74:147–153CrossRefGoogle Scholar
  6. Bextine BR, Thorvilson HG (2002) Field application of bait-formulated Beauveria bassiana alginate pellets for biological control of the red important fire ant (Hymenoptera: Formicidae). Environ Entomol 31:746–752Google Scholar
  7. Bomar CR, Lockwood JA (1991) Developmental and dietary effect on consumption of wheat bran by laboratory reared Melanoplus sanguinipes (F) (Orthoptera: Acididae). J Kans Entomol Soc 64:295–299Google Scholar
  8. Bomar CR, Lockwood JA, Pomerinke MA, French JD (1993) Multiyear evaluation of the effects of Nosema locustae (Microsporidia: Nosematidae) on rangeland grasshopper (Orthoptera: Acrididae) population density and national biological control. Environ Entomol 22:489–497Google Scholar
  9. Boys HA (1978) Food selection by Oedaleus senegalensis (Acrididae: Orthoptera) in grassland and millet fields. Entomol Exp Appl 24:278–286CrossRefGoogle Scholar
  10. Canning EU (1955) A new microsporidian Nosema locustae n. sp From the fat body of Locusta migratoria migratorioides R and F. Parasitology 43:287–290Google Scholar
  11. Caudwell RW (1993) Bait formulation of microbial agents for grasshopper control. Biocontrol News Inf 14:53–57Google Scholar
  12. Caudwell RW, Gatehouse AG (1996a) Formulation of grasshopper and locust entomopathogens in baits using starch extrusion technology. Crop Prot 15:33–37CrossRefGoogle Scholar
  13. Caudwell RW, Gatehouse AG (1996b) Laboratory and field trial of bait formulations of the fungal pathogen, Metarhizium flavoviride, against a tropical grasshopper and locust. Biocontrol Sci Technol 6:561–567CrossRefGoogle Scholar
  14. Charnley AK (1992) Mechanisms of fungal pathogenesis in insects with particular reference to locusts. In: Lomer CJ, Prior C (eds) Biological control of locusts and grasshoppers. CAB International, Wallingford, pp 181–190Google Scholar
  15. Cheke RA (1990) A migrant pest in the Sahel: the Senegalese grasshopper Oedaleus senegalensis. Philos Trans R Soc Lond Ser B 328:539–553CrossRefGoogle Scholar
  16. Cheke RA, Fishpool LDC, Forrest CA (1980) Oedaleus senegalensis (Krauss) (Orthoptera: Acrididae: Oedipodinae): An account of the 1977 outbreak in West Africa and notes on eclosion under laboratory conditions. Acrida 9:107–132Google Scholar
  17. Cherry A, Jenkins N, Heviefo G, Bateman RP, Lomer C (1999) A West African pilot scale production plant for aerial conidia of Metarhizium sp. for use as mycoinsecticide against locusts and grasshoppers. Biocontrol Sci Technol 9:35–51CrossRefGoogle Scholar
  18. De Groote H, Douro-Kpindou O-K, Ouambama Z, Gbongboui C, Müller D, Attignon S, Lomer C (2001) Assessing the feasibility of biological control of locusts and grasshoppers in West Africa: incorporating the farmers perspective. Agric Human Values 18:413–428CrossRefGoogle Scholar
  19. Douro-Kpindou OK, Lomer CL, Langewald J, Togo T, Sagara D (2001) Effet de l’application d’un mélange lambda-cyhalothrin (pesticide chimique) et de spores de Metarhizium anisopliae (flavoviride) var. acridum Driver and Milner (biopesticide) appliqué sur les larves de sauteriaux au Mali. J Appl Entomol 125:249–253CrossRefGoogle Scholar
  20. Erlandson MA, Ewen ALB, Mukerji MK, Gillott C (1986) Susceptibility of immature stages of Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae) and its effect on host fecundity. Can Entomol 118:29–35Google Scholar
  21. Ewen AB, Mukerji MK (1979) Susceptibility of five species of Saskatchewan grasshopper to field applications of Nosema locustae (Microsporidia: Nosematidae). Can Entomol 111:973–974Google Scholar
  22. Ewen AB, Mukerji MK (1980) Evaluation of Nosema locustae Canning (Microsporidia) as a control agent of grasshopper populations in Saskatchewan. J Invertebr Pathol 35:295–303CrossRefGoogle Scholar
  23. GTZ (1992) Efficacy and environmental impact of Nosema locustae on grasshoppers in Cape Verde: A synthesis report. 16 pGoogle Scholar
  24. Haraprasad N, Nirandjana SR, Prakash HS, Shetty HS, Wahab S (2001) Beauveria bassiana a potential mycopesticide for the efficient control of coffee berry borer, Hypothenemus hampei (Ferrari) in India. Biocontrol Sci Technol 11:251–260CrossRefGoogle Scholar
  25. Henderson CF, Tilton EW (1955) Tests with acaricides against the brown wheat mite. J Econ Entomol 48:157–161Google Scholar
  26. Henry JE (1971) Experimental application of Nosema locustae for control of grasshoppers. J Invertebr Pathol 18:389–394CrossRefGoogle Scholar
  27. Henry JE (1992) Efficacy of environmental impact for biological control of Nosema locustae on grasshoppers in Cape Verde. A synthesis report. GTZ Eschborn. p 16Google Scholar
  28. Henry JE, Omar EA (1974) Effects of infection by Nosema locustae Canning, Nosema acridophaqus Henry and Nosema cureatum Henry (Microsporidia: Nosematidae) in Melanoplus bivitatus (Say) (Orthoptera: Acrididae). Acrida 3:223–231Google Scholar
  29. Henry JE, Onsager JA (1982) Large scale test of control of grasshoppers on rangeland with Nosema locustae. J Econ Entomol 73:31–35Google Scholar
  30. Henry JE, Tiahrt K, Omar AE (1973) Importance of timing, spore concentrations, and levels of spore carrier in application of Nosema locustae (Microsporidia: Nosematidae) for control of grasshoppers. J Invertebr Pathol 21:263–272CrossRefGoogle Scholar
  31. Inglis GD, Johnson DL, Goettel MS (1996) Effect of bait substrate and formulation on infection of grasshopper nymphs by Beauveria bassiana. Biocontrol Sci Technol 6:35–50CrossRefGoogle Scholar
  32. Ishii T, Takastsuka J, Nakai M, Kunimi Y (2002) Growth characteristics and competitive abilities of nucleopolyhedrovirus and an entomopox virus in larvae of the smaller tea tortrix, Adoxophyes bonmai (Lepidoptera: Tortricidae). Biol Control 23:96–105CrossRefGoogle Scholar
  33. Johnson DL, Henry JE (1987) Low rates of insecticides and Nosema locustae (Microsporidia: Nosematidae) on bait applied to roadsides for grasshopper (Orthoptera: Acrididae) control. J Econ Entomol 80:685–689Google Scholar
  34. Johnson DL, Goettel MS (1993) Reduction of grasshopper populations following field application of the fungus Beauveria bassiana. Biocontrol Sci Technol 3:165–175CrossRefGoogle Scholar
  35. Johnson DL, Dolinski AM (1997) Attempts to increase the prevalence and severity of infection of grasshoppers with the entomopathogen Nosema locustae Canning (Microsporidi: Nosematidae) by repeated field application. Mem Entomol Soc Can 171:391–400Google Scholar
  36. Kooyman C, Godonou I (1997) Infection of Schistocerca gregaria (Orthoptera: Acricidae) hoppers by Metarhizium flavoviride (Deuteromycotina: Hyphomycetes) conidia in an oil formulation applied under desert conditions. Bull Entomol Res 87:105–107Google Scholar
  37. Kooyman C, Bateman RP, Langewald J, Lomer CJ, Ouambama Z, Thomas MB (1997) Operational-scale application of entomopathogenic fungi for control of sahelian grasshoppers. Proc R Soc Lond, Ser B Biological Sci 264:541–546CrossRefGoogle Scholar
  38. Koppenhöfer AM, Kaya HK (1997) Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biol Control 8:131–137CrossRefGoogle Scholar
  39. Lange CE (2005) The host and geographical range of the grasshopper pathogen Paranosema (Nosema) locustae revisited. J Orthop Res 14:137–141CrossRefGoogle Scholar
  40. Lange CE, Sanchez NE, Wittenstein E (2000) Effect of the pathogen Nosema locustae (Protozoa: Microsporida) on mortality and development of nymphs of the South American locust, Schistocerca cancellata (Orthoptera: Acrididae). J Orthop Res 9:77–80Google Scholar
  41. Langewald J, Kooyman C, Douro-Kpindou O, Lomer CJ, Dahmoud AO, Mohamed HO (1997) Field treatment of Desert Locust (Schistocerca gregaria Forskål) hoppers in the field in Mauretania with an oil formulation of the entomopathogenic fungus Metarhizium flavoviride. Biocontrol Sci Technol 7:603–611CrossRefGoogle Scholar
  42. Langewald J, Ouambama Z, Mamadou A, Peveling R, Stolz I, Bateman R, Attignon S, Blanford S, Arthurs S, Lomer CJ (1999) Comparison of an organophosphate insecticide with a mycoinsecticide for control of Oedaleus senegalensis (Orthoptera: Acrididae) and other sahelian grasshopper at an operational scale. Biocontrol Sci Technol 9:199–214CrossRefGoogle Scholar
  43. Lobo-Lima ML, C Klien-Koch (1981) Schwerpunkte in der integrierten Bekämpfung von Schadarthropoden auf den Kapverdischen Inseln (W-Afrika). Mitt Dtsch Ges Allg Angew Entomol 3:60–65Google Scholar
  44. Lockwood JA, DeBrey DL (1990) Direct and indirect effect of large-scale application of Nosema locustae (Microsporida: Nosematidae) on rangeland grasshoppers (Orthoptera: Acrididae). Entomol Soc Am 83:377–383Google Scholar
  45. Lockwood JA, Bomar CR, Ewen AB (1999) The history of biological control with Nosema locustae: lessons for locust management. Insect Sci Appl 19:333–350Google Scholar
  46. Lomer CJ (1997) Metarhizium flovoviride: recent results in the control of locusts and grasshoppers. In: Krall S, Peveling R, Diallo D (eds) New strategies in locust control. Birkhäuser Verlag, Basel, Switzerland, pp 415–424Google Scholar
  47. Lomer CL, Bateman RP, Dent D, De Grotte H, Douro-Kpindou O-K, Kooyman C, Langewald J, Ouambama Z, Peveling R, Thomas MB (1999) Development of strategies for the incorporation of biological pesticides into the integrated pest management of locusts and grasshoppers. Agric For Entomol 1:71–88Google Scholar
  48. Lopez JD Jr, Shaver TN, Beerwinkle KR, Lingren PD (2000) Feeding attractant and stimulant for adult control of noctuid and/or other lepidopteran species. US Patent 6:074,634. Issued June 2000Google Scholar
  49. Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702PubMedCrossRefGoogle Scholar
  50. Malakar R, Elkinton JS, Hajek AE, Burand JP (1999) Within-host interaction of Lymantria dispar (Lepidoptera: Lymantriidae) nuocleopolydrosis virus and Entomophaga maimaiga (Zygomycetes: entomophtorales). J Invertebr Pathol 73:1–14CrossRefGoogle Scholar
  51. Mulock B, Chandler L (2000) Field-cage studies of Beauveria bassiana (Hyphomycetes: Moniliaceae) for suppression of adult West con rootworm, Diabrotica virgifera (Coleoptera: chrysomelidae). Biocontrol Sci Technol 10:51–60CrossRefGoogle Scholar
  52. Müller D, De Groote H, Gbongboui C, Langewald J (2002) Participatory development of a biological control strategy of the variegated grasshopper in the humid tropics in West Africa. Crop Prot 21:265–275CrossRefGoogle Scholar
  53. Onsager JA, Henry JE, Foster RN, Staten RT (1980) Acceptance of wheat bran bait by species of rangeland grasshoppers. J Econ Entomol 73:548–551Google Scholar
  54. Onsager JA, Rees NE, Henry JE, Foster RN (1981) Integration of bait formulations of Nosema locustae and Carbaryl for control of range grasshoppers. J Econ Entomol 74:183–187Google Scholar
  55. Pierce CMF, Solter LF, Weinzierl RA (2001) Interaction between Nosema pyrausta (Microsporidia: Nosematidae) and Bacillus thuringiensis subsp. Kurstaki in the European corn borer (Lepidoptera: Pyralidae). J Econ Entomol. 94:1361–1368PubMedCrossRefGoogle Scholar
  56. Pilarska DK, Solter LF, Kereselidze M, Linde A, Hoch G (2006) Microsporidian infections in Lymantria dispar larvae: interactions and effects of multiple species infections on pathogen horizontal transmission. J Invertebr Pathol 93:105–113PubMedCrossRefGoogle Scholar
  57. Popov GB (1980) Studies on oviposition, egg development and mortality in Oedaleus senegalensis (Krauss), (Orthoptera: Acrididae) in the Sahel. Miscellaneous Report no 53, Centre for Overseas Pest Research London, 48 ppGoogle Scholar
  58. Price RE, EJ Müller, Brown HD, Uamba PD, Jone AA (1999) The first trial of Metarhizium anisopliae var. acridum mycoinsecticide for the control of the red locust in a recognised outbreak area. Insect Sci Appl 19:323–331Google Scholar
  59. Raina SK, Dos S, Rai MM, Khurad AM (1995) Transovarial transmission of Nosema locustae (Microsporidia: Nosematidae) in the migratory Locusta migratoria migratorioides. Parasitol Res 81:38–44PubMedCrossRefGoogle Scholar
  60. SPSS (1999) SPSS Based 14.0 User’s Guide. SPSS Inc., USAGoogle Scholar
  61. Streett DA (1995) Augmentative release of a protozoan parasite found in Camnula pellucida from Klamath Marsh, Oregon in 1995. Report to USDA/APHIS from USDA/ARS Rangeland Insect Laboratory, Bozeman, Montana, 6 ppGoogle Scholar
  62. Streett DA, Woods SA, Onsager JA (1993) Vertical transmission of Nosema sp. (Microsporidia Nosematidae) infecting a grasshopper, Chorthippus acutipennis (Orthoptera Acrididae). Environ Entomol 22:1031–1034Google Scholar
  63. Thomas BM, Watson LE, Valverde-Garcia P (2003) Mixed infections and insect-pathogen interactions. Ecol Lett 6:183–188CrossRefGoogle Scholar
  64. Tounou AK (2007) The potential of Paranosema (Nosema) locustae (Microsporidia: Nosematidae) and its combination with Metarhizium anisopliae var. acridum (Deuteromycotina: Hyphomycetes) for the control of locusts and grasshoppers in West Africa. PhD thesis, Leibniz University of Hanover, Germany, p 126Google Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2007

Authors and Affiliations

  • Agbeko Kodjo Tounou
    • 1
    • 2
  • Christiann Kooyman
    • 1
  • Ouro Kobi Douro-Kpindou
    • 1
  • Hans Michael Poehling
    • 2
  1. 1.International Institute of Tropical Agriculture (IITA)Biological Control Center for AfricaTri postal CotonouRepublic of Benin
  2. 2.Institute of Plant Diseases and Plant ProtectionUniversity of HanoverHanoverGermany

Personalised recommendations