, Volume 52, Issue 4, pp 547–558 | Cite as

Nematophagous fungus Paecilomyces lilacinus (Thom) Samson is also a biological agent for control of greenhouse insects and mite pests

  • Żaneta Fiedler
  • Danuta Sosnowska


Pathogenicity of nematophagous fungus Paecilomyces lilacinus (Thom) Samson in control of the most destructive greenhouse pests such as: greenhouse whitefly, Trialeurodes vaporariorum, glasshouse red spider mite, Tetranychus urticae, the cotton aphid, Aphis gossypii and western flower thrips, Frankliniella occidentalis was examined in laboratory and pot experiments. The fungus showed the greatest efficacy in controlling winged and wingless forms of the cotton aphid. The cotton aphid’s population was almost totally eliminated. In controlling the greenhouse whitefly, P. lilacinus was most successful when applied against nymphal growth stages (L3-L4). Control of the western flower thrips was most efficient against prepupal and pupal stages when the fungus was applied as a water spore suspension to the soil. When the fungus was applied at temperatures below 10 °C, it was able to reduce a glasshouse red spider mite population by 60%.


biological control greenhouse pests Paecilomyces lilacinus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors want to thank Prof. J.C. van Lenteren for his comments about the manuscript and for language correction.


  1. Amancho A., Sasser J.N. (1995). Biological control of Meloidogyne incognita with Paecilomyces lilacinus. Biocontrol 1: 51–61Google Scholar
  2. Atkins S.D., Clark I.M., Pande S., Hirsch P.R., Kerry B.R. (2005). The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol. Ecol. 51: 257–264PubMedCrossRefGoogle Scholar
  3. Azaizeh H., Gindin G., Said O., Barash I.(2002). Biological control of the western flower thrips Frankliniella occiden talis in cucumber using the entomopathogenic fungus Metarhizium anisopliae. Phytoparasitica 30 (1): 18–24Google Scholar
  4. Bałazy S. (2000). Zróżnicowanie grup funkcjonalnych grzybów entomopatogenicznych. Biotechnologia 3 (50): 11–32Google Scholar
  5. Benuzzi M., Santopolo F. (2001). Naturalis: a bioinsecticide based on Beauveria bassiana. Informatore – Fitopatologico 51 (4): 61–64Google Scholar
  6. Borisov B.A. (1998). Semi-industrial cultivation of the nematoparasitic fungus Paecilomyces lilacinus (Thom) Samson (Deuteromycotina, Hyphomycetes) and its application against root-knot nematodes in greenhouses. Russ. J. Nematol. 6: 59–60Google Scholar
  7. Borisov B.A., Ushchekov A.T. (1997). Entomofilnye griby – gifomitsety protiv paslenovogo minera. Zashchita i Karantin Rastenij 5: 10–11 (in Russian)Google Scholar
  8. Goodwin S., Steiner M., Enkegaard A.E. (2002). Developments in IPM protected cropping in Australia. Bulletin OILB SROP 25 (1): 81–84Google Scholar
  9. Gökce A., Er M. K. (2005). Pathogenicity of Paecilomyces spp. to the Glasshouse Whitefly, Trialeurodes vaporariorum, with some observations on the fungal infection process. Turkish J. Agric. For. 29(5): 331–339Google Scholar
  10. Jacobson R. J., Chandler D., Fenlon J., Russell K. M. (2001). Compatibility of Beauveria bassiana with Amblyseius cucumeris to control Frankliniella occidentalis on cucumber plants. Biocontrol Sci. Techn. 11(3): 391–400CrossRefGoogle Scholar
  11. Jatala P. (1986). Biolgical control of plant parasitic nematodes. Annu. Rev. Phytopathol. 24: 453–489CrossRefGoogle Scholar
  12. Neethling D. (2002). The commercialization of Paecilomyces lilacinus as an agent for the control of plant-parasitic nematodes. Nematology 4:154Google Scholar
  13. Pandey R. and P.C. Trivedi, 1990. Biological control of Meloidogyne incognita by Paecilomyces lilacinus in Capsicum annuum. Indian Phytopathology 134–135Google Scholar
  14. Rodriguez-Kabana R., Morgan-Jones G., Goday G., Gintis B.O. (1984). Effectiveness of species of Gliocladium, Paecilomyces and Verticillium for control of Meloidogyne arenaria in field soil. Nematropica 14: 155–170Google Scholar
  15. Samson R.A. (1974). Paecilomycesand some allied hyphomycetes. Stud. Mycol. 6: 1–119Google Scholar
  16. Serman H., Smiths P.H. (2000). Importance of coincidence for the efficiency of the entomopathogenic fungus Verticillium lecanii against Frankliniella occidentalis. Bulletin OILB-SROP 23(2): 223–226Google Scholar
  17. Shipp L., Zhang Y., Hunt D., Ferguson G., Enkegaard A.E. (2002). Influence of greenhouse microclimate on the efficacy of Beauveria bassiana (Balsamo) Vuillemin for control of greenhouse pests. Bulletin OILB-SROP 25(1): 237–240Google Scholar
  18. Silva J.F.V., Piza S.M., Carnerio R.G. (1992). Occurence of Paecilomyces lilacinus infesting eggs of Meloidogyne incognita in the northwest of Parana. Nematologia Brasileira 16: 74–76Google Scholar
  19. Sosnowska D. (2005). Fungi biopesticides in biological control of greenhouse and field pests [in Polish]. Postępy Nauk Rolniczych 5: 17–27Google Scholar
  20. Sosnowska, D. 2001. The role of fungi in reduction of sugar beet nematode (Heterodera schachtii) population. In: “Tri-trophic interactions in the rhizosphere and root-health nematode-fungal-bacterial interrelationships”. IOBC/WPRS Bulletin 24 (1): 151–156.Google Scholar
  21. Sosnowska, D. 2003. Możliwości zastosowania Pochodnia chlamydosporia (Goddard) Zare et Gams oraz Paecilomyces lilacinus (Thom) Samson w biologicznym zwalczaniu mątwika burakowego (Heterodera schachtii Schmidt) i guzaków korzeniowych (Meloidogyne spp.). Rozprawy Naukowe Instytutu Ochrony Roślin, zeszyt 9. 95 pp.Google Scholar
  22. Sosnowska D., Piątkowski J. (1995). Nowy preparat biologiczny do zwalczania mączlika szklarniowego. Ochrona Roślin, 11: 7–9Google Scholar
  23. Sosnowska, D. and J. Piątkowski, 1996. Efficacy of entomopathogenic fungus Paecilomyces fumosoroseus against whitefly (Trialeurodes vaporariorum) in greenhouse tomato cultures. Insect Pathogens and Insect Parasitic Nematodes. Ed.P.H.␣Smits. IOBC WPRS Bulletin, 19 (9): 179–182.Google Scholar
  24. Takayasu S., Akazi M., Shimizu Y. (1977). Cutaneous mycosis caused by Paecilomyces lilacinus. Arch. Dermatol. 113: 1687–1690PubMedCrossRefGoogle Scholar
  25. van Lenteren, J.C. 2003. Commercial availability of biological control agents. Chapter 11 In: J.C. van Lenteren (ed.), Quality Control and Production of Biological Control Agents: Theory and Testing Procedures. CABI Publishing, Wallingford, UK. pp. 167–179.Google Scholar
  26. Wang L.F., Yang B.J., Li C.D. (2001). Investigation of parasitic fungi on root-knot nematode in East China. Mycosystema 20 (2): 264–267Google Scholar
  27. Zaki F.A. (1994). Effect of culture filtrates of Paecilomyces lilacinus on Meloidogyne javanica. Nematologia Mediterranea 22: 41—43Google Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2007

Authors and Affiliations

  1. 1.Department of Biological Control and QurantineInstitute of Plant ProtectionPoznanPoland

Personalised recommendations