, 52:365

Why demographic and modeling approaches should be adopted for estimating the effects of pesticides on biocontrol agents

  • John D. Stark
  • Regina Lúcia Sugayama
  • Adalecio Kovaleski


Recent studies have shown that simplistic measures of toxicity such as the LC50 do not provide enough information about the actual effects that may occur in pesticide-exposed populations over longer time periods than a few days. In this paper we discuss the use of demography and population modeling for estimation of pesticide effects on pest and beneficial species and argue that these new approaches are essential to further our understanding of the potential impacts that pesticides might have on both pest and beneficial species such as biological control agents.


life table response experiments demography models toxicology LC50 pesticides 


  1. Banks, H.T., J.E. Banks, L.K. Dick and J.D. Stark Estimation of dynamic rate parameters in insect populations undergoing sublethal exposure to pesticides. Bull. Math. Bio. (in press)Google Scholar
  2. Biddinger D.J., Hull L.A. (1999). Sublethal effects of selected insecticides on growth and reproduction of a laboratory susceptible strain of tufted apple bud moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 92:314–324Google Scholar
  3. Blumel S., Gross M. (2001). Effect of pesticide mixtures on the predatory mite Phytoseiulus persimilis AH (Acarina, Phytoseiidae) in the laboratory. J. Appl. Entomol. 125: 201–205CrossRefGoogle Scholar
  4. Butter N.S., Singh G., Dhawan A.K. (2003) Laboratory evaluation of the insect growth regulator lufenuron against Helicoverpa armigera in cotton. Phytoparasitica 31:200–203Google Scholar
  5. Carey J.R. (1993). Applied demography for biologists with special emphasis on insects. Oxford University Press, New YorkGoogle Scholar
  6. Castagnoli M., Angeli G., Liguori M., Forti D., Simoni S. (2002). Side effects of botanical insecticides on predatory mite Amblyseius andersoni (Chant). Anzeiger fur Schadlingskunde 75: 122–127CrossRefGoogle Scholar
  7. Caswell H. (2000). Matrix Population models: Construction, Analysis and Interpretation 2nd ed. Sinauer Associates Inc., Sunderland, MassachusettsGoogle Scholar
  8. Forbes V.E., Calow P. (1999). Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ. Toxicol. Chem. 18:1544–1556CrossRefGoogle Scholar
  9. Holscher J.A., Barrett B.A. (2003). Effects of methoxyfenozide-treated surfaces on the attractiveness and responsiveness of adult codling moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 96:623–628CrossRefGoogle Scholar
  10. Josan A., Singh G. (2000). Sublethal effects of lufenuron on the diamondback moth, Plutella xylostella (Linnaeus). Ins. Sci. Applic. 20:303–308Google Scholar
  11. Kavousi A., Talebi K. (2003). Side-effects of three pesticides on the predatory mite, Phytoseiulus persimilis (Acari : Phytoseiidae). Exp. App. Acarol. 31: 51–58CrossRefGoogle Scholar
  12. Kim M., Shin D., Suh E., Cho K. (2004). An assessment of the chronic toxicity of fenpyroximate and pyridaben to Tetranychus urticae using a demographic bioassay Appl. Entomol. Zool. 39: 401–409CrossRefGoogle Scholar
  13. Myers G.A., Hull L.A. (2003). Insect growth regulator impact on fecundity and fertility of adult tufted apple bud moth, Platynota idaeusalis Walker. J. Entomol. Sci. 38:420–430Google Scholar
  14. Overmeer W.P.J., van Zon A.Q. (1982). A standardized method for testing the side-effects of pesticides on the predacious mite Amblyseius andersoni (Acarina: Phytoseiidae). Entomophaga 27:357–364CrossRefGoogle Scholar
  15. Rezaei M., K. Talebi, N. Hosseini and A. Kavousi. Impacts of the pesticides imidacloprid, propargite and pymetrozine on Chrysoperla carnea (Stephans) (Neuroptera: Chrysopida): using IOBC and lifae table assays. BioControl. (in press)Google Scholar
  16. Stark J. D., Vargas R.I., Thalman R.K. (1990). Azadirachtin: Effects on metamorphosis, longevity, and production of three Tephritid fruit fly species (Diptera: Tephritidae). J. Econ. Entomol. 83:2168–2174Google Scholar
  17. Stark J.D., Wennergren U. (1995). Can population effects of pesticides be predicted from demographic toxicological studies?. J. Econ. Entomol. 88:1089–1096Google Scholar
  18. Stark J.D., Banks J.E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 48: 505–519PubMedCrossRefGoogle Scholar
  19. Stark J.D., Banks J.E, Acheampong S. (2004a). Estimating susceptibility of biological control agents to pesticides: influence of life history strategies and population structure. Biol. Control 29: 392–398CrossRefGoogle Scholar
  20. Stark J.D., Banks J.E., Vargas R.I. (2004b). How risky is risk assessment? The Role that Life History Strategies Play in Susceptibility of Species to Stress 2004. Proc. Nat. Acad. Sci. 101:732–736CrossRefGoogle Scholar
  21. Stark J.D. (2005). How closely do acute lethal concentration estimates predict effects of toxicants on populations?. Integrated Environ. Assess. Manage. 1: 109–113CrossRefGoogle Scholar
  22. Sugayama, R., A. Kovaleski and J.D. Stark. A demographic modeling approach for the evaluation of the effects of eight insect growth regulators on Bonagota cranaodes (Meyrick) (Lepidoptera: Tortricidae), a key pest of apples in Brazil. Neotropical Entomol. (in press)Google Scholar
  23. Wennergren U., Stark J.D. (2000). Modeling long-term effects of pesticides on populations: beyond just counting dead animals. Ecol. Appl. 10: 295–302CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2006

Authors and Affiliations

  • John D. Stark
    • 1
  • Regina Lúcia Sugayama
    • 2
  • Adalecio Kovaleski
    • 3
  1. 1.Puyallup Research and Extension CenterWashington State UniversityPuyallupUSA
  2. 2.AgroPEC – Pesquisa, Extensão e Consultoria LtdaVacariaBrazil
  3. 3.Embrapa Uva e Vinho, Estação Experimental de VacariaVacariaBrazil

Personalised recommendations