BioControl

, 52:41

Functional response of the predator Scolothrips takahashii to hawthorn spider mite, Tetranychus viennensis: effect of age and temperature

Article
  • 231 Downloads

Abstract

A leaf disc bioassay was employed to examine the effects of temperature and predator age on functional response of an acarophagous thrips, Scolothrips takahashii Priesner, to hawthorn spider mite, Tetranychus viennensis Zacher, in the laboratory. The results indicated that the predatory thrips exhibited type-II functional responses against the mites under various temperatures, and that females are more voracious than males. Analysis showed that temperature had significant effects on the predatory capacity of adult thrips over the range of 20–35 °C. Attack rate in females linearly increased with temperature while in males it was independent of temperature. Handling times in both males and females decreased linearly with increasing temperature. Extended response models describing the functional response with temperature incorporated as a parameter were developed, yielding an estimated maximum numbers of prey attacked at four temperatures were 38.38, 55.06, 71.74 and 88.42 eggs per day for females, and 15.11, 26.11, 37.11 and 48.01 eggs per day for males, respectively. The age of predator affected both the type of the functional response shown and the magnitude of predation by S.␣takahashii on the spider mite. Females of various ages exhibited Type-II functional responses with similar attack rates, but handling time prolonged linearly as age increased: the handling times in 15- and 18-d-old females were significantly longer than in 6-d-old thrips. However, Type-I functional responses were determined for males aged 12 d or more; the maximum number of prey eaten in 24 h decreased as age increased. The implications of the results for the management of hawthorn spider mite are discussed.

Keywords

age functional response Scolothrips takahashii temperature Tetranychus viennensis 

References

  1. Ambrose D.P., Claver M.A. and Mariappan P. (1996). Functional response of Rhynocoris marginatus Fabricius (Heteroptera: Reduvidae) to Mylabris pustulata (Coleoptera: Meloidae). Fresenius Environ. Bull. 5: 85–89Google Scholar
  2. Butler M.I. and Burns C.W. (1991). Prey selectivity of Piona exigua, a planktonic water mite. Oecologia 86: 210–222CrossRefGoogle Scholar
  3. Cocuzza G.E., De Clercq P. and Lizzio S. (1997). Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomol. Exp. Appl. 85:189–198CrossRefGoogle Scholar
  4. Coll M., and Ridgway R.L. (1995). Functional and numerical responses of Orius insidiosus (Heteroptera: Anthocoridae) to its prey in different vegetable crops. Ann. Entomol. Soc. Am. 88:732–738Google Scholar
  5. Dixon A.F.G. and Agarwala B.K. (2002). Triangular fecundity function and ageing in ladybird beetles. Ecol. Entomol. 27: 433–440CrossRefGoogle Scholar
  6. Enkegaard A. (1994). Temperature dependent functional response of Encarsia formosa parasitizing the Poinsettia-strain of cotton whitefly, Bemisia tabaci on Poinsettia. Entomol. Exp. Appl. 73: 19–29CrossRefGoogle Scholar
  7. Funao T. and Yoshiyasu Y. (1995). Development and fecundity of Orius sauteri (Poppius) (Hemiptera: Anthocoridae) reared on Aphis gossypii Glover and corn pollen. Jpn. J. Appl. Entomol. Zool. 39:84–85Google Scholar
  8. Gao Z.R., Qiu F., and Li Q.S. (1989). Biology and predation effects of Scolothrips takahashii in cotton field. Entomol. Knowledge. 26:332–333Google Scholar
  9. Gilstrap F.E. and Oatman E.R. (1976). The bionomics of Scolothrips sexmaculatus (Pergande) (Thysanoptera: Thripidae), an insect predator of spider mites. Hilgardia 44: 27–59Google Scholar
  10. Gitonga L.M., Overholt W.A., LŐhr B., Magambo J.K., Mueke J.M. (2002). Functional response of Orius albidipennis (Hemiptera:Anthocoridae) to Megalurothrips sjostedti (Thysanoptera: Thripidae). Biol. Control 24:1–6CrossRefGoogle Scholar
  11. Gotoh T., Yamaguchi K., Fukazawa M. and Mori K. (2004a). Effect of temperature on life history traits of the predatory thrips, Scolothrips takahashii Priesner (Thysanoptera: Thripidae). Appl. Entomol. Zool. 39:511–519CrossRefGoogle Scholar
  12. Gotoh T., Nozawa M. and Yamauchi K. (2004b). Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory. Appl. Entomol. Zool. 39:97–105CrossRefGoogle Scholar
  13. Han Y.F. (1982). Two new species in genus of Scolothrips and recognition of males in Scolothrips Takahashii Priesner. Animal Res. 3:53–56 (in Chinese)Google Scholar
  14. Hoddle M.S. (2003). The effect of prey species and environmental complexity on the functional response of Franklinothrips orizabensis: a test of the fractal foraging model. Ecol. Entomol. 28: 309–318CrossRefGoogle Scholar
  15. Houck M.A. and Strauss R.E. (1985). The comparative study of functional responses: experimental design and statistical interpretation. Can. Entomol. 117: 617–629CrossRefGoogle Scholar
  16. Juliano S.A. (2001). Non-linear curve fitting: predation and functional response curves. In: Scheiner S.M. and Gurevitch J. (eds) Design and Analysis of Ecological Experiments. Oxford University Press, New York, pp. 178–196Google Scholar
  17. Kalyebi A., Overholtb W.A., Schulthessa F., Muekec J.M., Hassand S.A., Sithananthama S. (2005). Functional response of six indigenous trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) in Kenya: influence of temperature and relative humidity. Biol. Control 32: 164–171CrossRefGoogle Scholar
  18. Kishimoto H. (2002). Species composition and seasonal occurrence of spider mites (Acari: Tetranychidae) and their predators in Japanese pear orchards with different agrochemical spraying programs. Appl. Entomol. Zool. 37: 603–615CrossRefGoogle Scholar
  19. Kishimoto H. (2003). Development and oviposition of predacious insects, Stethorus japonicus (Coleoptera: Coccinellidae), Oligota kashmirica benefica (Coleoptera: Staphylinidae), and Scolothrips takahashii (Thysanoptera: Thripidae) reared on different spider mite species (Acari: Tetranychidae). Appl. Entomol. Zool. 38:15–21CrossRefGoogle Scholar
  20. Kohno K. and Kashio T. (1998). Development and prey consumption of Orius sauteri (Poppius) and O. minutus (L.) (Heteroptera: Anthocoridae) fed on Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool. 33:227–230Google Scholar
  21. Lester P.J., Thistlewood H.M.A. and Harmsen R. (2000). Some effects of pre-release host–plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24: 19–33PubMedCrossRefGoogle Scholar
  22. Li D.L., Zhang C.T. and Xu G.L. (1998). A study on the population dynamics and damage of red spider mite; Tetranychus viennensis. Forest Res. 11: 335–338 (in Chinese)Google Scholar
  23. Li D.X., Hou Y.L. and Shen Z.R. (2005). Influence of host plant species on the development and reproduction of hawthorn spider mite. Acta Ecol. Sinica. 25:1562–1568 (in Chinese)Google Scholar
  24. Liu J., Hu M., Han J., Liu H. and Zhong G. (2004). Resistance of Tetranychus viennensis Zacher to acaricides and synergistic effect of pesticide combination. Acta Phytophylacica Sin. 31:199–204 (in Chinese)Google Scholar
  25. Liu Q.X. and Wang L.Q. (1965). Studies on the biology of hawthorn spider mite. Entomol. Knowledge. 9: 283–285 (in Chinese)Google Scholar
  26. Marisa C. and Sauro S. (1999). Effect of long-term feeding history on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Exp. Appl. Acarol. 23:217–234CrossRefGoogle Scholar
  27. McMurtry J.A. and Croft B.A. (1997). Life-style of Phytoseiidae mites and their roles in biological control. Annu. Rev. Entomol. 42:291–321PubMedCrossRefGoogle Scholar
  28. Meng Z.L., Li G.F., Dong X.L., Lin Y., Duan F.M. and Zhao C.D., (1997). Strategy for insecticide resistance management in plum spider mite Tetranychus viennensis Zacher. Chinese J. Pesticide 36:10–14Google Scholar
  29. Mills N.J. and Lacan I. (2004). Ratio dependence in the functional response of insect parasitoids: evidence from Trichogramma minutum foraging for eggs in small host patches. Ecol. Entomol. 29:208–216CrossRefGoogle Scholar
  30. Miyazaki M. and Kudo I..(1988). Bibliography and host plant catalogue of Thysanoptera of Japan. Misc. Publ. Natl. Inst. Agro-Environ. Sci. 3:1–246 (in Japanese)Google Scholar
  31. Mohaghegh J., De Clercq P. and Tirry L. (2001). Functional response of the predators Podisus maculiventris (Say) andPodisus nigrispinus (Dallas) (Het., Pentatomidae) to the beet armyworm, Spodoptera exigua (Hubner) (Lep., Noctuidae): effect of temperature. J. Appl. Entomol. 125: 131–134CrossRefGoogle Scholar
  32. Mori K. and Gotoh T. (2001). Effects of pesticides on the spider mite predators, Scolothrips takahashii and Stethorus japonicus (Coleoptera:Coccinellidae). Internat. J. Acarol. 27:299–302CrossRefGoogle Scholar
  33. Mori K., Nozawa M., Arai K. and Gotoh T. (2005). Life-history traits of the acarophagous lady beetle, Stethorus japonicus at three constant temperatures. BioControl 50:35–51CrossRefGoogle Scholar
  34. Nakagawa T. (1993). Studies on the seasonal occurrence and predatory activity of the predators of Kanzawa spider mite, Tetranychus kanzawai Kishida in tea fields. Bull. Saga Pref. Tea Exp. Stn. 1:1–40 (in Japanese)Google Scholar
  35. Obrycki J.J. and Kring T.J. (1998). Predaceous coccinellidae in biological control. Annu. Rev. Entomol. 43: 295–321PubMedCrossRefGoogle Scholar
  36. O’Neil R.J. (1989). Comparison of laboratory and field measurements of the functional response of Podisus maculiventris (Heteroptera: Pentatomidae). J. Kansas Entomol. Soc. 62:148–155Google Scholar
  37. Ponsonby D.J. and Copland M.J.W. (1998). Environmental influences on fecundity, egg viability and egg cannibalism in the scale insect predator, Chilocorus nigritus. BioControl 43:39–52CrossRefGoogle Scholar
  38. Priesner H. (1950). Studies on the genus Scolothrips. Bull. Soc. Entomol. Egypte. 34:39–68Google Scholar
  39. Priest N.K., Mackowiak B. and Promislow D.E.L. (2002). The role of parental age effects on the evolution of aging. Evolution 56:927–935PubMedGoogle Scholar
  40. Rogers D. (1972). Random search and insect population models. J. Anim. Ecol. 41:369–383CrossRefGoogle Scholar
  41. Rothstein M. (1982) Biochemical Approches to Aging. Academic Press, New York, 314 ppGoogle Scholar
  42. Sakamoto Y., Ishiguro M., Kitagawa G. (1986). Akaike Information Criterion Statistics. KTK Scientific Publishers, Tokyo, 290 ppGoogle Scholar
  43. SAS Institute (1999). Software Version 8 (TSMO). Cary, North Carolina, USAGoogle Scholar
  44. Shen H.M. and Zhang X.H. (2003). Selection,decline and recovery of Tetranychus urticae Koch resistance to fenpropathrin, omethoate and clofentezin. Acta Entomol. Sin. 45(3):341–345Google Scholar
  45. Shimoda T., Takabayashi J., Ashihara W. and A. Takafuji (1997). Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J. Chem. Ecol. 23:2033–2048CrossRefGoogle Scholar
  46. Srivastava S. and Omkar (2004). Age-specific mating and reproductive senescence in the seven-spotted ladybird, Coccinella septempunctata. J. Appl. Entomol. 128:452–458CrossRefGoogle Scholar
  47. Su S.Q. and Zhou Y.J. (1993). The functional response model of Chrysopa septempunctata to the density of Aphis citricola. J. Henan Agri. Univ. 27(2):156–158 (in Chinese)Google Scholar
  48. Trexler J.C., McCulloch C.E. and Travis J. (1988). How can the functional response best be determined? Oecologia 76:206–214CrossRefGoogle Scholar
  49. Wiedenmann R.N. and O’Neil R.J. (1991). Laboratory measurement of the functional response of Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Environ. Entomol. 20:610–614Google Scholar
  50. Xu Y.Y., Mou T.Y. and Hu C. (1999). Researches and application of Chrysoperla sinica (Tjeder) in China. Entomol. Knowledge. 36: 313–316 (in Chinese)Google Scholar
  51. Yamasaki Y., Yoshioka K. and Takeuchi F. (1983). Bionomics and predation of Scolothrips sp. Proc. Assoc. Pl. Prot. Shikoku 18: 83–86 (in Japanese)Google Scholar
  52. Zhang, J.Y., H. J. Chen and D.Y. Chen, 2005. Studies on the hawthorn spider mite control by the combination of Scolothrips takahashii and pyridaben. Decid. Fruit 37(4): 39–42 (in Chinese)Google Scholar
  53. Zhang, N.X., Y.Z. Jiang, Y.G. Zhan and Z.G. Cao, 1979. Integrated pest management in apple orchard. In: Institute of Zoology, Chinese Academy of Sciences (eds), Integrated pest managements for major pests in China. Science Press, Beijing, pp. 222–237 (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of HorticultureHenan University of Science and TechnologyLuoyangP.R. China
  2. 2.Department of EntomologyChina Agricultural UniversityBeijingP.R. China

Personalised recommendations