, Volume 51, Issue 6, pp 821–835 | Cite as

Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut

  • C. P. Gupta
  • Bhavesh Kumar
  • R. C. Dubey
  • D. K. MaheshwariEmail author


Pseudomonas aeruginosa GRC1 exhibited strong antagonistic activity against Sclerotinia sclerotiorum, in vitro and in vivo. Scanning electron microscopic (SEM) studies showed morphological abnormalities such as perforation, lysis and fragmentation of hyphae of S. sclerotiorum caused by P. aeruginosa GRC1. This strain produced extracellular chitinase enzyme, the role of which was clearly demonstrated through Tn5 mutagenesis. Bacterization of peanut seeds with GRC1 resulted in increased seed germination and reduced stem-rot of peanut in S. sclerotiorum-infested soil by 97%. Other vegetative and yield plant parameters such as nodules per plant, pods and grain yield per plant were enhanced with a statistical significance in comparison to control. Neomycin resistant (GRC 1 neo+ ) bacterium was a good root colonizer and frequently isolated from rhizosphere of peanut plants. These findings showed P. aeruginosa GRC1 as a potential biocontrol agent against S. sclerotiorum.

Key words

Pseudomonas aeruginosa antagonism Sclerotinia sclerotiorum chitinase enzyme groundnut crop yield 



scanning electron microscopy


hydrocyanic acid


chrome azurol S


indole acetic acid


tryptic soy medium


potato dextrose agar


chitin minimal medium








colony forming unit


days after sowing


analysis of variants


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr A. Ambani for the help with the Scanning Electron photo microscopy. This work was financially supported by TMOP - CSIR, New Delhi.


  1. Anas O. and Reeleder R.D. (1987). Recovery of fungi and arthropods from sclerotia of Sclerotinia sclerotiorum in québec muck soils. Phytopathology 77: 327–331Google Scholar
  2. Arora N.K., Kang S.C., Maheshwari D.K. (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential againstMacrophomina phaseolina that causes charcoal rot of groundnut. Curr. Sci. 81: 673–677Google Scholar
  3. Bakker A.W. and Schippers B. (1987). Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Microbiol. Biochem. 19: 451–457CrossRefGoogle Scholar
  4. Bakker P.A., Lamers H.M., Bakker A.W., Marugg J.D., Weisbeek P.J., Schippers B. (1986). The role of siderophore in potato tubers yield increase by Pseudomonas putida by a short relation potato. Neth. J. Plant Pathol. 92: 249–256CrossRefGoogle Scholar
  5. Bano N. and Musarrat J. (2002). Characterization of a new Pseudomonas aeruginosa NJ-15 as a potential biocontrol agent. Curr. Microbiol. 43: 182–186Google Scholar
  6. Bhatia S., Dubey R.C., Maheshwari D.K. (2005). Enhancement of plant growth and suppression of collar rot of sunflower caused by Sclerotium rolferii through fluorescent pseudomonas. Ind. Phytopathol. 58: 17–24Google Scholar
  7. Bhatia S., Bhatia S., Dubey R.C., Maheshwari D.K. (2003) Antagonistic effect of fluorescent pseudomonades against Macrophomina phaseolina that causes charcoal rot of groundnut. Ind. J. Exp. Biol. 41: 1442–1446Google Scholar
  8. Boulnois G.J., Varly J.M., Sharpe G.S., Franklin F.C.H. (1985) Transposon donor plasmid, base on ColIBP9, for use in Pseudomonas putida and a variety of the Gram-negative bacteria. Mol. Gen. Genet. 200: 65–67PubMedCrossRefGoogle Scholar
  9. de Tempe J. (1963). The blotter method for seed health testing. Proc. Int. Seed Test Assoc. 28: 1933Google Scholar
  10. Deshwal V.K., Dubey R.C., Maheshwari D.K. (2003). Isolation of plant growth-promoting Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr. Sci. 84: 443–448Google Scholar
  11. Dowling D.N., O’ Gara F.(1994). Metabolites of Pseudomonas involved in biocontrol of plant diseases. TIBTECH 12: 133–141Google Scholar
  12. Dubey R.C., Dwivedi R.S. (1988) Effect of heavy metals on growth and survival of Macrophomina phaseolina (Tassi) Goid. Acta Bot. Ind. 16: 175–181Google Scholar
  13. Dunne C., Crowley J.J., Moënne-Locooz Y., Dowling D.N., de Bruijn P.J., O’ Gara F. (1997). Biological control of Pythium ultimum by Stenotrophomonas maltopholia W81 is mediated by an extracellular proteolytic activity. Microbiology 143: 3921–3931CrossRefGoogle Scholar
  14. Fridlender, M., J. Inbar and I. Chet, 1993. Biological control of soil borne plant pathogens by \(\beta\)-1,3-glucanase producing Pseudomonas cepacia. Soil Biol. Biochem. 25(9): 1211–1221Google Scholar
  15. Garbeva P., van Veen J.A., van Elas J.D. (2004). Assessment of the diversity and antagonism towards Rhizoctonia solani AG3 of Pseudomonas spp. in soil from different agricultural regimes. FEMS Microbiol. Ecol. 47: 51–64CrossRefPubMedGoogle Scholar
  16. Gomez K.A. and Gomez A.A. (1984). Statistical Procedures for Agricultural Research. A Wiley Interscience Publication, John Wiley and Sons, New York, USAGoogle Scholar
  17. Gupta C.P., Sharma A., Dubey R.C., Maheshwari D.K. (1999). Pseudomonas aeruginosa as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios 99: 183–189PubMedGoogle Scholar
  18. Gupta C.P., Dubey R.C., Maheshwari D.K. (2002). Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol. Fertl. Soil 35: 295–301Google Scholar
  19. Gupta C.P., Dubey R.C., Kang S.C., Maheshwari D.K. (2001). Antibiosis-mediated necrotrophic effect of Pseudomonas GRC2 against two fungal plant pathogens. Curr. Sci. 81: 91–94Google Scholar
  20. Hofte M., Seong K.Y., Jurkevitch E., Verstraete W. (1991). Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2: Ecological significance in soil. Plant Soil 130: 249–257CrossRefGoogle Scholar
  21. Howel C.R. and Stipanovic C. (1980) Suppression of Pythium ultimum induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70: 712–715Google Scholar
  22. Kloepper, J.W., R. Lifshitz and A. Novacky, 1988. Pseudomonas inoculation to benefit plant production. Animal Plant Sci. 60–64Google Scholar
  23. Kumar Dileep B.S., Dubey H.C. (1992). Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol. Biochem. 24: 539–542CrossRefGoogle Scholar
  24. Lee W.H. and Kobyashi K. (1980). Isolation and identification of antifungal Pseudomonas sp. from sugar beet roots and the use of antibiotic products. Korean J. Plant Pathol. 4: 264–270Google Scholar
  25. Lim H.S., Kim S.D. (1994). The production and enzymatic properties of extracellular chitinase from Pseudomonas stutzeri YPL1 as a biocontrol agent. J. Microbiol. Biotechnol. 4: 134–140Google Scholar
  26. Lim, H.S. and S.D. Kim, 1995. The role and characterization of \(\beta\)-1,3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri YLP-1. Curr. Microbiol. 33(4): 295–301Google Scholar
  27. Palleroni N.J. (1984). Gram-negative aerobic rods and cocci: family I Pseudomonadaceae: genus I Pseudomonas. In: Krieg N.R., Holt J.G. (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 1. William and Wilkins Co, Baltimore, MD, pp. 141–199Google Scholar
  28. Purdy L.H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69: 875–880Google Scholar
  29. Ran L.X., Liu C.I., Wu G.J., van Loon L.C. and Bakker P.A.H.M. (2005). Suppression of bacterial wilt in Eucalyptus urophylla by fluorescens Pseudomonas spp. in China. Biol. Control 32: 111–120CrossRefGoogle Scholar
  30. Schipper B., Bakker A.W., Bakker P.A.H.M. (1987). Interaction of deleterious and beneficial rhizosphere microorganism and the effect on cropping practices. Ann. Rev. Phytopathol 25: 339–358CrossRefGoogle Scholar
  31. Schwyn B. and Neilands J.B. (1987). Universal assay for the detection and determination of siderophores. Anal. Biochem. 160: 47–56PubMedCrossRefGoogle Scholar
  32. Seong K.Y., Hofte M., Verstraete W. (1992). Acclimatization of plant growth promoting Pseudomonas strain 7NSK2 in soil. Effect on population dynamics and plant growth. Soil Biol. Biochem. 24: 75–759CrossRefGoogle Scholar
  33. Sivan A. and Chet I. (1989). Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum TK-1. J. Ferment. Bioeng. 78: 407–412Google Scholar
  34. Skidmore A.M. and Dickinson C.H. (1976). Colony interaction and hyphal interference between Septoria nodorum and phylloplane fungi. Trans. Brit. Mycol. Soc. 66: 57–74CrossRefGoogle Scholar
  35. Steadman J.R. (1979). Control of plant diseases caused by Sclerotinia species. Symposium of Sclerotinia. Am. Phytopathol. Soc. 79: 904–907Google Scholar
  36. Upadhyay R.S., Jayaswal R.K. (1992) Pseudomonas cepacia causes mycelial deformities and inhibition of condition in phytopathogenic fungi. Curr. Microbiol. 24: 181–187CrossRefGoogle Scholar
  37. Validov S., Mavrodi O., De La Fuente L., Boronin A., Weller D., Thomasho L., Mavrodi D. (2005). Antagonistic activity among 2,4-diacetyl phloroglucinol producing fluorescent Pseudomonas sp. FEMS Micribiol. Lett. 242: 249–256CrossRefGoogle Scholar
  38. Weller D.M. and Cook R.J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73: 463–469CrossRefGoogle Scholar
  39. Zhou T. and Boland G.J. (1999). Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 21: 93–99CrossRefGoogle Scholar
  40. Zhou T., Reeleder R.D. (1989). Application of Epicoccum purpurascens spores to control white mold of bean. Plant Dis. 73: 639-642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • C. P. Gupta
    • 1
  • Bhavesh Kumar
    • 1
  • R. C. Dubey
    • 1
  • D. K. Maheshwari
    • 1
    Email author
  1. 1.Department of Botany and MicrobiologyGurukul Kangri UniversityHardwarIndia

Personalised recommendations